The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation capacity of the entire structure. Therefore, the introduction of friction dampers in the HSTCB-to-column joints is investigated in order to evaluate the ability of the device in preventing the main structural elements from damage and limiting the cracking of the panel zone, thanks to the increase of the bending moment lever arm, which reduces the shear forces in the joint. Moreover, the proposed solution thoroughly investigates the connection between the friction device and the beam in order to ensure adequate strength and stiffness to the connection. The feasibility study is firstly conducted through the development of design criteria for the pre-dimensioning of the device and, successively, the proposed solution is validated through the generation of finite element models.
Design of RC joints equipped with hybrid trussed beams and friction dampers / Colajanni, P.; La Mendola, L.; Monaco, A.; Pagnotta, S.. - In: ENGINEERING STRUCTURES. - ISSN 0141-0296. - ELETTRONICO. - 227:(2021), p. 111442. [10.1016/j.engstruct.2020.111442]
Design of RC joints equipped with hybrid trussed beams and friction dampers
Monaco A.;
2021
Abstract
The challenge of this research consists in the first attempt to apply a dissipative friction connection to beam-to-column joints with semi-prefabricated Hybrid Steel-Trussed Concrete Beams (HSTCB) and RC pillars cast in-situ. Nowadays, HSTCBs are widely adopted in civil and industrial buildings and, therefore, it is required to evaluate their compliance with the capacity design criteria and their seismic energy dissipation capability. However, the design of the reinforcement of such beams usually lead to the adoption of large amount of steel within the panel zone which becomes potentially vulnerable to the effects of seismic cyclic actions and dramatically reduce the dissipation capacity of the entire structure. Therefore, the introduction of friction dampers in the HSTCB-to-column joints is investigated in order to evaluate the ability of the device in preventing the main structural elements from damage and limiting the cracking of the panel zone, thanks to the increase of the bending moment lever arm, which reduces the shear forces in the joint. Moreover, the proposed solution thoroughly investigates the connection between the friction device and the beam in order to ensure adequate strength and stiffness to the connection. The feasibility study is firstly conducted through the development of design criteria for the pre-dimensioning of the device and, successively, the proposed solution is validated through the generation of finite element models.File | Dimensione | Formato | |
---|---|---|---|
Colajanni et al_2021_eng struct_opt.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
accepted manuscript.pdf
Open Access dal 06/11/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2854185