The Hubbard model and its strong-coupling version, the Heisenberg one, have been widely studied on the triangular lattice to capture the essential low-temperature properties of different materials. One example is given by transition metal dichalcogenides, as 1T-TaS$_2$, where a large unit cell with 13 Ta atoms forms weakly coupled layers with an isotropic triangular lattice. By using accurate variational Monte Carlo calculations, we report the phase diagram of the $t-t′$ Hubbard model on the triangular lattice, highlighting the differences between positive and negative values of $t′/t$; this result can be captured only by including the charge fluctuations that are always present for a finite electron-electron repulsion. Two spin-liquid regions are detected: one for $t′/t<0$, which persists down to intermediate values of the electron-electron repulsion, and a narrower one for $t′/t>0$. The spin-liquid phase appears to be gapless, though the variational wave function has a nematic character, in contrast to the Heisenberg limit. We do not find any evidence for nonmagnetic Mott phases in the proximity of the metal-insulator transition, at variance with the predictions (mainly based upon strong-coupling expansions in $t/U$) that suggest the existence of a weak-Mott phase that intrudes between the metal and the magnetically ordered insulator.
Magnetic and spin-liquid phases in the frustrated t-t′ Hubbard model on the triangular lattice / Tocchio, L. F.; Montorsi, A.; Becca, F.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - STAMPA. - 102:11(2020), pp. 115150-1-115150-7. [10.1103/PhysRevB.102.115150]
Magnetic and spin-liquid phases in the frustrated t-t′ Hubbard model on the triangular lattice
Tocchio L. F.;Montorsi A.;Becca F.
2020
Abstract
The Hubbard model and its strong-coupling version, the Heisenberg one, have been widely studied on the triangular lattice to capture the essential low-temperature properties of different materials. One example is given by transition metal dichalcogenides, as 1T-TaS$_2$, where a large unit cell with 13 Ta atoms forms weakly coupled layers with an isotropic triangular lattice. By using accurate variational Monte Carlo calculations, we report the phase diagram of the $t-t′$ Hubbard model on the triangular lattice, highlighting the differences between positive and negative values of $t′/t$; this result can be captured only by including the charge fluctuations that are always present for a finite electron-electron repulsion. Two spin-liquid regions are detected: one for $t′/t<0$, which persists down to intermediate values of the electron-electron repulsion, and a narrower one for $t′/t>0$. The spin-liquid phase appears to be gapless, though the variational wave function has a nematic character, in contrast to the Heisenberg limit. We do not find any evidence for nonmagnetic Mott phases in the proximity of the metal-insulator transition, at variance with the predictions (mainly based upon strong-coupling expansions in $t/U$) that suggest the existence of a weak-Mott phase that intrudes between the metal and the magnetically ordered insulator.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.102.115150.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
447.68 kB
Formato
Adobe PDF
|
447.68 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2853652