Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. With the emergence of immunotherapy and novel targeted therapies, departure from the proportional hazard assumption is not rare in nowadays clinical research. Under non-proportional hazards, the hazard ratio does not have a straightforward clinical interpretation, and the log-rank test is no longer the most powerful statistical test even though it is still valid. Nevertheless, the log-rank test and the hazard ratio are still the primary analysis tools, and traditional approaches such as sample size increase are still proposed to account for the impact of non-proportional hazards. The weighed log-rank test and the test based on the restricted mean survival time (RMST) are receiving a lot of attention as a potential alternative to the log-rank test. We conduct a simulation study comparing the performance and operating characteristics of the log-rank test, the weighted log-rank test and the test based on the RMST, including a treatment effect estimation, under different non-proportional hazards patterns. Results show that, under non-proportional hazards, the hazard ratio and weighted hazard ratio have no straightforward clinical interpretation whereas the RMST ratio can be interpreted regardless of the proportional hazards assumption. In terms of power, the RMST achieves a similar performance when compared to the log-rank test.

Quantifying treatment differences in confirmatory trials under non-proportional hazards / JIMENEZ MORO, JOSE LUIS. - In: JOURNAL OF APPLIED STATISTICS. - ISSN 0266-4763. - 49:2(2022), pp. 466-484. [10.1080/02664763.2020.1815673]

Quantifying treatment differences in confirmatory trials under non-proportional hazards

Jose Luis Jimenez
2022

Abstract

Proportional hazards are a common assumption when designing confirmatory clinical trials in oncology. With the emergence of immunotherapy and novel targeted therapies, departure from the proportional hazard assumption is not rare in nowadays clinical research. Under non-proportional hazards, the hazard ratio does not have a straightforward clinical interpretation, and the log-rank test is no longer the most powerful statistical test even though it is still valid. Nevertheless, the log-rank test and the hazard ratio are still the primary analysis tools, and traditional approaches such as sample size increase are still proposed to account for the impact of non-proportional hazards. The weighed log-rank test and the test based on the restricted mean survival time (RMST) are receiving a lot of attention as a potential alternative to the log-rank test. We conduct a simulation study comparing the performance and operating characteristics of the log-rank test, the weighted log-rank test and the test based on the RMST, including a treatment effect estimation, under different non-proportional hazards patterns. Results show that, under non-proportional hazards, the hazard ratio and weighted hazard ratio have no straightforward clinical interpretation whereas the RMST ratio can be interpreted regardless of the proportional hazards assumption. In terms of power, the RMST achieves a similar performance when compared to the log-rank test.
File in questo prodotto:
File Dimensione Formato  
1908.10502.pdf

accesso aperto

Descrizione: pre print autore
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 538.76 kB
Formato Adobe PDF
538.76 kB Adobe PDF Visualizza/Apri
Quantifying treatment differences in confirmatory trials under non proportional hazards.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2852749