The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3-5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1-2 J, 1013W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8-15 Å). High quality monochromatic (δλ/λ ∼ 10-5-10-3) images with high spatial resolution (up to ∼ 4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.
Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability / Pikuz, T. A.; Faenov, A. Ya.; Fraenkel, M.; Zigler, A.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Letardi, T.; Grilli, A.; Palladino, L.; Tomassetti, G.; Reale, A.; Reale, L.; Scafati, A.; Limongi, T.; Bonfigli, F.; Alainelli, L.; Sanchez Del Rio, M.. - In: LASER AND PARTICLE BEAMS. - ISSN 0263-0346. - STAMPA. - 19:2(2001), pp. 285-293. [10.1017/S0263034601192189]
Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability
Limongi T.;
2001
Abstract
The shadow monochromatic backlighting (SMB) scheme, a modification of the well-known soft X-ray monochromatic backlighting scheme, is proposed. It is based on a spherical crystal as the dispersive element and extends the traditional scheme by allowing one to work with a wide range of Bragg angles and thus in a wide spectral range. The advantages of the new scheme are demonstrated experimentally and supported numerically by ray-tracing simulations. In the experiments, the X-ray backlighter source is a laser-produced plasma, created by the interaction of an ultrashort pulse, Ti:Sapphire laser (120 fs, 3-5 mJ, 1016 W/cm2 on target) or a short wavelength XeCl laser (10 ns, 1-2 J, 1013W/cm2 on target) with various solid targets (Dy, Ni + Cr, BaF2). In both experiments, the X-ray sources are well localized spatially (∼20 μm) and are spectrally tunable in a relatively wide wavelength range (λ = 8-15 Å). High quality monochromatic (δλ/λ ∼ 10-5-10-3) images with high spatial resolution (up to ∼ 4 μm) over a large field of view (a few square millimeters) were obtained. Utilization of spherically bent crystals to obtain high-resolution, large field, monochromatic images in a wide range of Bragg angles (35° < Θ < 90°) is demonstrated for the first time.File | Dimensione | Formato | |
---|---|---|---|
Pikuz_LPB_2001.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
528.94 kB
Formato
Adobe PDF
|
528.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2852578