Abstract: High level of atmospheric carbon dioxide (CO2) concentration is considered one of the main causes of global warming. Electrochemical conversion of CO2 into valuable chemicals and fuels has promising potential to be implemented into practical and sustainable devices. In order to efficiently realize this strategy, one of the biggest efforts has been focused on the design of catalysts which are inexpensive, active and selective and can be produced through green and up-scalable routes. In this work, copper-based materials are simply synthesized via microwave-assisted process and carefully characterized by physical/chemical/electrochemical techniques. Nanoparticle with a cupric oxide (CuO) surface as well as various cuprous oxide (Cu2O) cubes with different sizes is obtained and used for the CO2 reduction reaction. It is observed that the Cu2O-derived electrodes show enhanced activity and carbon monoxide (CO) selectivity compared to the CuO-derived one. Among various Cu2O catalysts, the one with the smallest cubes leads to the best CO selectivity of the electrode, attributed to a higher electrochemically active surface area. Under applied potentials, all Cu2O cubes undergo structural and morphological modification, even though the cubic shape is retained. The nanoclusters formed during the material evolution offer abundant and active reaction sites, leading to the high performance of the Cu2O-derived electrodes.

Facile synthesis of cubic cuprous oxide for electrochemical reduction of carbon dioxide / Zeng, J.; Castellino, M.; Bejtka, K.; Sacco, A.; Di Martino, G.; Farkhondehfal, M. A.; Chiodoni, A.; Hernandez, S.; Pirri, C. F.. - In: JOURNAL OF MATERIALS SCIENCE. - ISSN 0022-2461. - 56:2(2021), pp. 1255-1271. [10.1007/s10853-020-05278-y]

Facile synthesis of cubic cuprous oxide for electrochemical reduction of carbon dioxide

Zeng J.;Castellino M.;Sacco A.;Chiodoni A.;Hernandez S.;Pirri C. F.
2021

Abstract

Abstract: High level of atmospheric carbon dioxide (CO2) concentration is considered one of the main causes of global warming. Electrochemical conversion of CO2 into valuable chemicals and fuels has promising potential to be implemented into practical and sustainable devices. In order to efficiently realize this strategy, one of the biggest efforts has been focused on the design of catalysts which are inexpensive, active and selective and can be produced through green and up-scalable routes. In this work, copper-based materials are simply synthesized via microwave-assisted process and carefully characterized by physical/chemical/electrochemical techniques. Nanoparticle with a cupric oxide (CuO) surface as well as various cuprous oxide (Cu2O) cubes with different sizes is obtained and used for the CO2 reduction reaction. It is observed that the Cu2O-derived electrodes show enhanced activity and carbon monoxide (CO) selectivity compared to the CuO-derived one. Among various Cu2O catalysts, the one with the smallest cubes leads to the best CO selectivity of the electrode, attributed to a higher electrochemically active surface area. Under applied potentials, all Cu2O cubes undergo structural and morphological modification, even though the cubic shape is retained. The nanoclusters formed during the material evolution offer abundant and active reaction sites, leading to the high performance of the Cu2O-derived electrodes.
File in questo prodotto:
File Dimensione Formato  
Facile synthesis of cubic cuprous oxide for EC red CO2 (Zeng 2021).pdf

accesso aperto

Descrizione: Editorial version
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
Facile synthesis of cubic cuprous oxide for EC red CO2 (Zeng 2021)_SI.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2851501