Composite quantum systems can be in generic states characterized not only by entanglement but also by more general quantum correlations. The interplay between these two signatures of nonclassicality is still not completely understood. In this work we investigate this issue, focusing on computable and observable measures of such correlations: entanglement is quantified by the negativity N, while general quantum correlations are measured by the (normalized) geometric quantum discord DG. For two-qubit systems, we find that the geometric discord reduces to the squared negativity on pure states, while the relationship DGN2 holds for arbitrary mixed states. The latter result is rigorously extended to pure, Werner, and isotropic states of two-qudit systems for arbitrary d, and numerical evidence of its validity for arbitrary states of a qubit and a qutrit is provided as well. Our results establish an interesting hierarchy, which we conjecture to be universal, between two relevant and experimentally friendly nonclassicality indicators. This ties in with the intuition that general quantum correlations should at least contain and in general exceed entanglement on mixed states of composite quantum systems. © 2011 American Physical Society.
Interplay between computable measures of entanglement and other quantum correlations / Girolami, D.; Adesso, G.. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 84:5(2011), p. 052110. [10.1103/PhysRevA.84.052110]
Interplay between computable measures of entanglement and other quantum correlations
Girolami D.;
2011
Abstract
Composite quantum systems can be in generic states characterized not only by entanglement but also by more general quantum correlations. The interplay between these two signatures of nonclassicality is still not completely understood. In this work we investigate this issue, focusing on computable and observable measures of such correlations: entanglement is quantified by the negativity N, while general quantum correlations are measured by the (normalized) geometric quantum discord DG. For two-qubit systems, we find that the geometric discord reduces to the squared negativity on pure states, while the relationship DGN2 holds for arbitrary mixed states. The latter result is rigorously extended to pure, Werner, and isotropic states of two-qudit systems for arbitrary d, and numerical evidence of its validity for arbitrary states of a qubit and a qutrit is provided as well. Our results establish an interesting hierarchy, which we conjecture to be universal, between two relevant and experimentally friendly nonclassicality indicators. This ties in with the intuition that general quantum correlations should at least contain and in general exceed entanglement on mixed states of composite quantum systems. © 2011 American Physical Society.File | Dimensione | Formato | |
---|---|---|---|
PhysRevA.84.052110.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
615.78 kB
Formato
Adobe PDF
|
615.78 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2849554