We extend the geometric measure of quantum discord, introduced and computed for two-qubit states, to quantify non-classical correlations in composite Gaussian states of continuous variable systems. We lay the formalism for the evaluation of a Gaussian geometric discord in two-mode Gaussian states, and present explicit formulas for the class of two-mode squeezed thermal states. In such a case, under physical constraints of bounded mean energy, geometric discord is shown to admit upper and lower bounds for a fixed value of the conventional (entropic) quantum discord. We finally discuss alternative geometric approaches to quantify Gaussian quadrature correlations. © 2011 World Scientific Publishing Company.
Gaussian geometric discord / Adesso, G.; Girolami, D.. - In: INTERNATIONAL JOURNAL OF QUANTUM INFORMATION. - ISSN 0219-7499. - 9:7-8(2011), pp. 1773-1786. [10.1142/S0219749911008192]
Gaussian geometric discord
Girolami D.
2011
Abstract
We extend the geometric measure of quantum discord, introduced and computed for two-qubit states, to quantify non-classical correlations in composite Gaussian states of continuous variable systems. We lay the formalism for the evaluation of a Gaussian geometric discord in two-mode Gaussian states, and present explicit formulas for the class of two-mode squeezed thermal states. In such a case, under physical constraints of bounded mean energy, geometric discord is shown to admit upper and lower bounds for a fixed value of the conventional (entropic) quantum discord. We finally discuss alternative geometric approaches to quantify Gaussian quadrature correlations. © 2011 World Scientific Publishing Company.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2849533