Linear Feedback Shift Registers (LFRS) are tools commonly used in cryptography in many different context, for example as pseudo-random numbers generators. In this paper we characterize LFRS with certain symmetry properties. Related to this question we also classify polynomials f of degree n satisfying the property that if a is a root of f then f(a^n)=0. The classification heavily depends on the choice of the fields of coefficients of the polynomial; we consider the cases K=Fp and K=Q.
A note on cyclotomic polynomials and Linear Feedback Shift Registers / Capuano, Laura; Di Scala, Antonio J.. - In: QUAESTIONES MATHEMATICAE. - ISSN 1607-3606. - ELETTRONICO. - 45:11(2022), pp. 1655-1667. [10.2989/16073606.2021.1967504]
A note on cyclotomic polynomials and Linear Feedback Shift Registers
Laura Capuano;Antonio J. Di Scala
2022
Abstract
Linear Feedback Shift Registers (LFRS) are tools commonly used in cryptography in many different context, for example as pseudo-random numbers generators. In this paper we characterize LFRS with certain symmetry properties. Related to this question we also classify polynomials f of degree n satisfying the property that if a is a root of f then f(a^n)=0. The classification heavily depends on the choice of the fields of coefficients of the polynomial; we consider the cases K=Fp and K=Q.File | Dimensione | Formato | |
---|---|---|---|
11.Linear Feedback Shift Register.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
358.05 kB
Formato
Adobe PDF
|
358.05 kB | Adobe PDF | Visualizza/Apri |
CapuanoDiScala.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
770.71 kB
Formato
Adobe PDF
|
770.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2849207