Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy-like rods of height h mounted to the channel bed. The data comprised a time sequence of high-resolution images of a dye recorded in a plane parallel to the bed at z/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial-range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence.

Inverse Cascade Evidenced by Information Entropy of Passive Scalars in Submerged Canopy Flows / Ghannam, K.; Poggi, D.; Bou-Zeid, E.; Katul, G. G.. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - STAMPA. - 47:9(2020), pp. 1-10. [10.1029/2020GL087486]

Inverse Cascade Evidenced by Information Entropy of Passive Scalars in Submerged Canopy Flows

Poggi D.;
2020

Abstract

Turbulent mixing of scalars within canopies is investigated using a flume experiment with canopy-like rods of height h mounted to the channel bed. The data comprised a time sequence of high-resolution images of a dye recorded in a plane parallel to the bed at z/h= 0.2. Image processing shows that von Kármán wakes shed by canopy drag and downward turbulent transport from upper canopy layers impose distinct scaling regimes on the scalar spectrum. Measures from information theory are then used to explore the dominant directionality of the interaction between small and large scales underlying these two spectral regimes, showing that the arrival of sweeps from aloft establishes an inertial-range spectrum with forward “information” cascade. In contrast, wake growth with downstream distance leads to persistent upscale transfer (inverse cascade) of scalar variance, which hints at their nondiffusive character and the significance of the stem diameter as an active length scale in canopy turbulence.
File in questo prodotto:
File Dimensione Formato  
Inverse Cascade Evidenced.pdf

Open Access dal 30/10/2020

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2849056