Every mining operation is followed by a beneficiation process aimed at delivering quality materials to the transformation industry. Mainly, in order to separate valuable minerals from gangue in mineral processing, the crushing and grinding of extracted ore are crucial operations for the following separation steps. Comminution is the most energy-consuming operation in mining, and the quality of the results is strictly related to the characteristic of the material under treatment, the type of equipment used in comminution, and the circuit design adopted. A preliminary study was performed in order to understand the crushing behavior under different comminution forces of a high-grade mixed Zn-Pb sulfide ore sample, collected in a Mississippi-Valley Type (MVT) deposit, and the distribution of the target minerals among the products of the process. Ore samples were examined and characterized through thin section observation and SEM analyses for the determination of grain size and texture features, while X-ray powder diffraction (XRPD) quantitative analyses were performed for the definition of target mineral concentrations of comminuted product samples. The selected crushing and grinding circuit comprised lab-scale equipment. For each stage of the process, products below the estimated free-grain size threshold were collected, and particle size analyses were carried out. Comminution products were divided into size distribution classes suitable for further separation operations, and XRPD analyses showed a mineral-grade distribution varying with the dimensions of the products. Characterization of the ore material after crushing and grinding force applications in terms of the distribution of target minerals among different-sized classes was achieved. The important trends highlighted should be considered for further investigation related to an efficient separation.

Comminution Effects on Mineral-Grade Distribution: The Case of an MVT Lead-Zinc Ore Deposit / Baldassarre, Gabriele; Baietto, Oliviero; Marini, Paola. - In: MINERALS. - ISSN 2075-163X. - 10:10(2020), p. 893. [10.3390/min10100893]

Comminution Effects on Mineral-Grade Distribution: The Case of an MVT Lead-Zinc Ore Deposit

Gabriele Baldassarre;Oliviero Baietto;Paola Marini
2020

Abstract

Every mining operation is followed by a beneficiation process aimed at delivering quality materials to the transformation industry. Mainly, in order to separate valuable minerals from gangue in mineral processing, the crushing and grinding of extracted ore are crucial operations for the following separation steps. Comminution is the most energy-consuming operation in mining, and the quality of the results is strictly related to the characteristic of the material under treatment, the type of equipment used in comminution, and the circuit design adopted. A preliminary study was performed in order to understand the crushing behavior under different comminution forces of a high-grade mixed Zn-Pb sulfide ore sample, collected in a Mississippi-Valley Type (MVT) deposit, and the distribution of the target minerals among the products of the process. Ore samples were examined and characterized through thin section observation and SEM analyses for the determination of grain size and texture features, while X-ray powder diffraction (XRPD) quantitative analyses were performed for the definition of target mineral concentrations of comminuted product samples. The selected crushing and grinding circuit comprised lab-scale equipment. For each stage of the process, products below the estimated free-grain size threshold were collected, and particle size analyses were carried out. Comminution products were divided into size distribution classes suitable for further separation operations, and XRPD analyses showed a mineral-grade distribution varying with the dimensions of the products. Characterization of the ore material after crushing and grinding force applications in terms of the distribution of target minerals among different-sized classes was achieved. The important trends highlighted should be considered for further investigation related to an efficient separation.
File in questo prodotto:
File Dimensione Formato  
minerals-10-00893.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2848222