In this paper we investigate different strategies to overcome the scallop theorem. We will show how to obtain a net motion exploiting the fluid’s type change during a periodic deformation. We are interested in two different models: in the first one that change is linked to the magnitude of the opening and closing velocity. Instead, in the second one it is related to the sign of the above velocity. An interesting feature of the latter model is the introduction of a delay-switching rule through a thermostat. We remark that the latter is fundamental in order to get both forward and backward motion.
Swimming by switching / Bagagiolo, F.; Maggistro, R.; Zoppello, M.. - In: MECCANICA. - ISSN 0025-6455. - 52:14(2017), pp. 3499-3511. [10.1007/s11012-017-0620-6]
Swimming by switching
Maggistro R.;Zoppello M.
2017
Abstract
In this paper we investigate different strategies to overcome the scallop theorem. We will show how to obtain a net motion exploiting the fluid’s type change during a periodic deformation. We are interested in two different models: in the first one that change is linked to the magnitude of the opening and closing velocity. Instead, in the second one it is related to the sign of the above velocity. An interesting feature of the latter model is the introduction of a delay-switching rule through a thermostat. We remark that the latter is fundamental in order to get both forward and backward motion.File | Dimensione | Formato | |
---|---|---|---|
Swimming_Switching.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
812.78 kB
Formato
Adobe PDF
|
812.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2848218