Global Earthing Systems (GESs) are defined by International Standards IEC 61936-1 and EN 50522 as an equivalent Earthing System (ES) created by the interconnection of local ESs. Thanks to this interconnection, just a percentage of the total fault current is injected to ground in a single ES, reducing the risk of electrocution. However, even if several experiments and models proved this effect, the identification and official certification is still a difficult task. Dangerous scenarios caused by a single-line-to-ground fault can be easily evaluated for a specific MV feeder by measurement or analytic models (quite cumbersome to use), but operative procedures valid for all the scenarios are still not available. In this work, a simplified formula to compute the reduction factor is presented, as well as its rationale. The proposed formula is easy to use and the results provided are sufficiently accurate, taking into account a desired safety margin. For this reason, it could be a valid tool for Distributor System Operators (DSO) and Certification Bodies and a step forward for the GES identification. The proposed formula is finally tested on three study cases.

Validation and Testing of an Analytical Formulation to Compute the Reduction Factor in MV Grids / Colella, P.; Pons, E.; Piran, C.; Tommasini, R.. - In: IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. - ISSN 0093-9994. - ELETTRONICO. - 56:4(2020), pp. 3403-3411. [10.1109/TIA.2020.2986989]

Validation and Testing of an Analytical Formulation to Compute the Reduction Factor in MV Grids

Colella P.;Pons E.;Tommasini R.
2020

Abstract

Global Earthing Systems (GESs) are defined by International Standards IEC 61936-1 and EN 50522 as an equivalent Earthing System (ES) created by the interconnection of local ESs. Thanks to this interconnection, just a percentage of the total fault current is injected to ground in a single ES, reducing the risk of electrocution. However, even if several experiments and models proved this effect, the identification and official certification is still a difficult task. Dangerous scenarios caused by a single-line-to-ground fault can be easily evaluated for a specific MV feeder by measurement or analytic models (quite cumbersome to use), but operative procedures valid for all the scenarios are still not available. In this work, a simplified formula to compute the reduction factor is presented, as well as its rationale. The proposed formula is easy to use and the results provided are sufficiently accurate, taking into account a desired safety margin. For this reason, it could be a valid tool for Distributor System Operators (DSO) and Certification Bodies and a step forward for the GES identification. The proposed formula is finally tested on three study cases.
File in questo prodotto:
File Dimensione Formato  
IAS_Reduction-v6_final.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 636.45 kB
Formato Adobe PDF
636.45 kB Adobe PDF Visualizza/Apri
Colella2020Validation.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2847704