Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling.

Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes / Wu, Qidong; Tiraferri, Alberto; Li, Tong; Xie, Wancen; Chang, Haiqing; Bai, Yuhua; Liu, Baicang. - In: ACS OMEGA. - ISSN 2470-1343. - 5:36(2020), pp. 23450-23459-23459. [10.1021/acsomega.0c03429]

Superwettable PVDF/PVDF-g-PEGMA Ultrafiltration Membranes

Tiraferri, Alberto;
2020

Abstract

Poly(vinylidene fluoride) (PVDF) is a common and inexpensive polymeric material used for membrane fabrication, but the inherent hydrophobicity of this polymer induces severe membranes fouling, which limits its applications and further developments. Herein, we prepared superwettable PVDF membranes by selecting suitable polymer concentration and blending with PVDF-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA). This fascinating interfacial phenomenon causes the contact angle of water droplets to drop from the initial value of over 70° to virtually 0° in 0.5 s for the best fabricated membrane. The wetting properties of the membranes were studied by calculating the surface free energy by surface thermodynamic analysis, by evaluating the peak height ratio from Raman spectra, and other surface characterization methods. The superwettability phenomenon is the result of the synergetic effects of high surface free energy, the Wenzel model of wetting, and the crystalline phase of PVDF. Besides superwettability, the PVDF/PVDF-g-PEGMA membranes show great improvements in flux performance, sodium alginate (SA) rejection, and flux recovery upon fouling.
2020
File in questo prodotto:
File Dimensione Formato  
acsomega.0c03429.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.69 MB
Formato Adobe PDF
4.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846955