In this letter, we describe and validate a microwave antenna designed for an imaging device for the diagnosis and monitoring of cerebrovascular pathologies. The antenna consists of a printed monopole immersed in a parallelepipedic block of semiflexible material with custom-permittivity, which allows to avoid the use of liquid coupling media and enables a simple array arrangement. The “brick” is built with a mixture of urethane rubber and graphite powder. The -10 dB frequency band of the antenna is 800 MHz-1.2 GHz, in agreement with the device requirements. The designed brick antenna is assessed in terms of power penetration, reflection, and transmission coefficients. To show the performance of the antenna in the relevant application scenario, an experiment has been carried out on an anthropomorphic head phantom, measuring the differential signals between healthy state and hemorrhagic stroke mimicking condition for different antennas positions.

Brick Shaped Antenna Module for Microwave Brain Imaging Systems / Rodriguez-Duarte, David; Tobon Vasquez, Jorge A.; Scapaticci, Rosa; Crocco, Lorenzo; Vipiana, Francesca. - In: IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS. - ISSN 1536-1225. - ELETTRONICO. - 19:12(2020), pp. 2057-2061. [10.1109/LAWP.2020.3022161]

Brick Shaped Antenna Module for Microwave Brain Imaging Systems

Rodriguez-Duarte, David;Tobon Vasquez, Jorge A.;Vipiana, Francesca
2020

Abstract

In this letter, we describe and validate a microwave antenna designed for an imaging device for the diagnosis and monitoring of cerebrovascular pathologies. The antenna consists of a printed monopole immersed in a parallelepipedic block of semiflexible material with custom-permittivity, which allows to avoid the use of liquid coupling media and enables a simple array arrangement. The “brick” is built with a mixture of urethane rubber and graphite powder. The -10 dB frequency band of the antenna is 800 MHz-1.2 GHz, in agreement with the device requirements. The designed brick antenna is assessed in terms of power penetration, reflection, and transmission coefficients. To show the performance of the antenna in the relevant application scenario, an experiment has been carried out on an anthropomorphic head phantom, measuring the differential signals between healthy state and hemorrhagic stroke mimicking condition for different antennas positions.
File in questo prodotto:
File Dimensione Formato  
AWPL_2020_DR.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Rodriguez-Brick.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846931