The capability of microwaves to penetrate an object as interact differently with each of its elements, allows Microwave Imaging (MWI) technologies to be used in a myriad of fields and applications to "see-through" an object in a non-invasive approach. For instance, in the biomedical field, the scattered signals from cancer lesions, blood accumulation, and bio-tissues (all considered dielectric objects) contain the information required by imaging of the specific context. In the case of the open medical issue of brain stroke monitoring after onset, MWI provides clinicians with a complementary alternative to the well-establish imaging-based techniques of support of diagnosis and treatment follow-up. An example of a novel low-complexity-architecture MWI prototype with an optimized number of antennas and adequate positioning on a helmet is presented below. It exploits a differential imaging approach and provides 3D images of the stroke.

Microwave Imaging for Brain Stroke Monitoring / Jorge, Tobon; David, Rodriguez-Duarte. - ELETTRONICO. - (2020). [10.32545/encyclopedia202007.0006.v2]

Microwave Imaging for Brain Stroke Monitoring

Jorge, Tobon;David Rodriguez-Duarte
2020

Abstract

The capability of microwaves to penetrate an object as interact differently with each of its elements, allows Microwave Imaging (MWI) technologies to be used in a myriad of fields and applications to "see-through" an object in a non-invasive approach. For instance, in the biomedical field, the scattered signals from cancer lesions, blood accumulation, and bio-tissues (all considered dielectric objects) contain the information required by imaging of the specific context. In the case of the open medical issue of brain stroke monitoring after onset, MWI provides clinicians with a complementary alternative to the well-establish imaging-based techniques of support of diagnosis and treatment follow-up. An example of a novel low-complexity-architecture MWI prototype with an optimized number of antennas and adequate positioning on a helmet is presented below. It exploits a differential imaging approach and provides 3D images of the stroke.
2020
scholarly community encyclopedia
File in questo prodotto:
File Dimensione Formato  
Rodriguez-Microwave.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 652.57 kB
Formato Adobe PDF
652.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2846929