Compared to simple masonry walls, numerical modelling of masonry vaulted structures is particularly complex due to their three-dimensional curved geometry and articulated masonry pattern. Moreover, the scarce availability of experimental data makes it difficult to validate numerical models for these types of structures. Recently, the simplified micro-modelling approach has been applied by different authors, despite some intrinsic limits, such as huge numerical effort and adoption of ad-hoc written numerical codes. The aim of this study is to overcome these difficulties by using a commercial software with built-in friction interface models and to validate the proposed simplified-micro model through experimental tests on in-scale specimens of arch and cross vault. The proposed approach has shown promising features: experimental results have been numerically reproduced with a high degree of accuracy, both in case of planar and space structures, with both dry and mortar joints. The final result of the study is a validated modelling strategy that could be confidently applied to real masonry vaulted structures.
Validation of Simplified Micro-models for the Static Analysis of Masonry Arches and Vaults / Alforno, Marco; Monaco, Alessia; Venuti, Fiammetta; Calderini, Chiara. - In: INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE. - ISSN 1558-3058. - ELETTRONICO. - 15:8(2021), pp. 1196-1212. [10.1080/15583058.2020.1808911]
Validation of Simplified Micro-models for the Static Analysis of Masonry Arches and Vaults
Marco Alforno;Alessia Monaco;Fiammetta Venuti;
2021
Abstract
Compared to simple masonry walls, numerical modelling of masonry vaulted structures is particularly complex due to their three-dimensional curved geometry and articulated masonry pattern. Moreover, the scarce availability of experimental data makes it difficult to validate numerical models for these types of structures. Recently, the simplified micro-modelling approach has been applied by different authors, despite some intrinsic limits, such as huge numerical effort and adoption of ad-hoc written numerical codes. The aim of this study is to overcome these difficulties by using a commercial software with built-in friction interface models and to validate the proposed simplified-micro model through experimental tests on in-scale specimens of arch and cross vault. The proposed approach has shown promising features: experimental results have been numerically reproduced with a high degree of accuracy, both in case of planar and space structures, with both dry and mortar joints. The final result of the study is a validated modelling strategy that could be confidently applied to real masonry vaulted structures.File | Dimensione | Formato | |
---|---|---|---|
Alforno et al_approved.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
8.9 MB
Formato
Adobe PDF
|
8.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Alforno_et_al_Accepted version.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2845494