This article investigates the accuracy of the estimation of efficiency maps for permanent magnet (PM) machines using the stator resistance, d- and q-axis flux-linkages versus the corresponding axis current and the iron loss versus the speed characteristic. The ultimate goal is to apply this approach to the experimental measurements, but this article performs initial investigation using only the finite-element (FE) data. Detailed FE data for 50-kW surface PM (SPM) and interior PM (IPM) machines are used to determine the 'actual' or exact efficiency map and, hence, the accuracy of using approximations. This article examines the effect on the torque-speed capability curve when ignoring cross-saturation effects. It also examines the modeling of the variation of iron losses as a function of load in the constant torque and power regions. A novel approach based on scaling the no-load (NL) losses as a function of load is proposed and shown to give promising results. FE results from two other machines are also provided, which show good correspondence.

Estimation of PM Machine Efficiency Maps from Limited Data / Kahourzade, S.; Mahmoudi, A.; Soong, W. L.; Ertugrul, N.; Pellegrino, G.. - In: IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. - ISSN 0093-9994. - STAMPA. - 56:(2020), pp. 2612-2621. [10.1109/TIA.2020.2979975]

Estimation of PM Machine Efficiency Maps from Limited Data

Pellegrino G.
2020

Abstract

This article investigates the accuracy of the estimation of efficiency maps for permanent magnet (PM) machines using the stator resistance, d- and q-axis flux-linkages versus the corresponding axis current and the iron loss versus the speed characteristic. The ultimate goal is to apply this approach to the experimental measurements, but this article performs initial investigation using only the finite-element (FE) data. Detailed FE data for 50-kW surface PM (SPM) and interior PM (IPM) machines are used to determine the 'actual' or exact efficiency map and, hence, the accuracy of using approximations. This article examines the effect on the torque-speed capability curve when ignoring cross-saturation effects. It also examines the modeling of the variation of iron losses as a function of load in the constant torque and power regions. A novel approach based on scaling the no-load (NL) losses as a function of load is proposed and shown to give promising results. FE results from two other machines are also provided, which show good correspondence.
File in questo prodotto:
File Dimensione Formato  
Manuscript.rev5.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 5.32 MB
Formato Adobe PDF
5.32 MB Adobe PDF Visualizza/Apri
09034083_compressed.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 9.36 MB
Formato Adobe PDF
9.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2845465