The dynamics of the velocity gradient tensor in turbulence is governed in part by the anisotropic pressure Hessian, which is a non-local functional of the velocity gradient field. This anisotropic pressure Hessian plays a key dynamical role, for example in preventing finite-time singularities, but it is difficult to understand and model due to its non-locality and complexity. In this work a symmetry transformation for the pressure Hessian is introduced, such that when the transformation is applied to the original pressure Hessian, the dynamics of the invariants of the velocity gradients remains unchanged. We then exploit this symmetry transformation to perform a dimensional reduction on the three-dimensional anisotropic pressure Hessian, which, remarkably, is possible everywhere in the flow except on zero-measure sets. The dynamical activity of the newly introduced dimensionally reduced anisotropic pressure Hessian is confined to two-dimensional manifolds in the three-dimensional flow, and exhibits striking alignment properties with respect to the strain-rate eigenframe and the vorticity vector. The dimensionality reduction, together with the strong preferential alignment properties, leads to new dynamical insights for understanding and modelling the role of the anisotropic pressure Hessian in three-dimensional turbulent flows.

Symmetry transformation and dimensionality reduction of the anisotropic pressure Hessian / Carbone, M.; Iovieno, M.; Bragg, A. D.. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - STAMPA. - 900:(2020), p. A38. [10.1017/jfm.2020.470]

Symmetry transformation and dimensionality reduction of the anisotropic pressure Hessian

Carbone M.;Iovieno M.;
2020

Abstract

The dynamics of the velocity gradient tensor in turbulence is governed in part by the anisotropic pressure Hessian, which is a non-local functional of the velocity gradient field. This anisotropic pressure Hessian plays a key dynamical role, for example in preventing finite-time singularities, but it is difficult to understand and model due to its non-locality and complexity. In this work a symmetry transformation for the pressure Hessian is introduced, such that when the transformation is applied to the original pressure Hessian, the dynamics of the invariants of the velocity gradients remains unchanged. We then exploit this symmetry transformation to perform a dimensional reduction on the three-dimensional anisotropic pressure Hessian, which, remarkably, is possible everywhere in the flow except on zero-measure sets. The dynamical activity of the newly introduced dimensionally reduced anisotropic pressure Hessian is confined to two-dimensional manifolds in the three-dimensional flow, and exhibits striking alignment properties with respect to the strain-rate eigenframe and the vorticity vector. The dimensionality reduction, together with the strong preferential alignment properties, leads to new dynamical insights for understanding and modelling the role of the anisotropic pressure Hessian in three-dimensional turbulent flows.
File in questo prodotto:
File Dimensione Formato  
symmetry_transformation_and_dimensionality_reduction_of_the_anisotropic_pressure_hessian.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2844779