The koff values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method-infrequent metadynamics, based on the AMBER force field-to compute the koff of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M2. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA-protein complexes.

Accuracy of Molecular Simulation-Based Predictions of koff Values: A Metadynamics Study / Capelli, R.; Lyu, W.; Bolnykh, V.; Meloni, S.; Olsen, J. M. H.; Rothlisberger, U.; Parrinello, M.; Carloni, P.. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - 11:15(2020), pp. 6373-6381. [10.1021/acs.jpclett.0c00999]

Accuracy of Molecular Simulation-Based Predictions of koff Values: A Metadynamics Study

Capelli R.;
2020

Abstract

The koff values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method-infrequent metadynamics, based on the AMBER force field-to compute the koff of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M2. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA-protein complexes.
File in questo prodotto:
File Dimensione Formato  
receptor.pdf

non disponibili

Descrizione: Main Text
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
jz0c00999_si_001.pdf

non disponibili

Descrizione: Supporting information (pdf)
Tipologia: Altro materiale allegato
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.74 MB
Formato Adobe PDF
7.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
LaTeX_JPCLetters-2.pdf

Open Access dal 17/07/2021

Descrizione: Ultima versione sottomessa e accettata per la pubblicazione
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 10.05 MB
Formato Adobe PDF
10.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2844573