The fluidic thrust-vectoring modulation on a Bypass Dual-Throat Nozzle (BDTN) is studied numerically. The thrust vectoring modulation is obtained by varying the secondary mass flow, introducing different area contraction ratios of the bypass duct. The scope of present study is twofold: (i) to set up a model for the control of the secondary mass flow that is consistent with the resolution of the nozzle main flow and (ii) to derive a simplified representation of a valve system embedded in the bypass channel. The simulations of the turbulent airflow inside the BDTN and its efflux in the external ambient have been simulated by using RANS approach with RNG k-eps turbulence modeling. The numerical results have been validated with experimental and numerical data available in the open literature. The nozzle performance and thrust vector angle are computed for different values of the bypass area contraction ratio. The effects of different secondary mass flow rates on the system resultant thrust ratio and discharge coefficient of the bypass dual-throat nozzle have been investigated. By using the proposed approach to the secondary mass flow modulation, the thrust pitch angle has been controlled up to 27°

Numerical study of secondary mass flow modulation in a Bypass Dual-Throat Nozzle / Hamedi-Estakhrsar, Mh; Ferlauto, M; Mahdavy-Moghaddam, H. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART G, JOURNAL OF AEROSPACE ENGINEERING. - ISSN 0954-4100. - ELETTRONICO. - 235:4(2021), pp. 488-500. [10.1177/0954410020947920]

Numerical study of secondary mass flow modulation in a Bypass Dual-Throat Nozzle

Ferlauto, M;
2021

Abstract

The fluidic thrust-vectoring modulation on a Bypass Dual-Throat Nozzle (BDTN) is studied numerically. The thrust vectoring modulation is obtained by varying the secondary mass flow, introducing different area contraction ratios of the bypass duct. The scope of present study is twofold: (i) to set up a model for the control of the secondary mass flow that is consistent with the resolution of the nozzle main flow and (ii) to derive a simplified representation of a valve system embedded in the bypass channel. The simulations of the turbulent airflow inside the BDTN and its efflux in the external ambient have been simulated by using RANS approach with RNG k-eps turbulence modeling. The numerical results have been validated with experimental and numerical data available in the open literature. The nozzle performance and thrust vector angle are computed for different values of the bypass area contraction ratio. The effects of different secondary mass flow rates on the system resultant thrust ratio and discharge coefficient of the bypass dual-throat nozzle have been investigated. By using the proposed approach to the secondary mass flow modulation, the thrust pitch angle has been controlled up to 27°
File in questo prodotto:
File Dimensione Formato  
Jaero-bdtn.pdf

non disponibili

Descrizione: Postprint editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
post-print.pdf

accesso aperto

Descrizione: postprint author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2842658