The hot working behaviour of additively manufactured Ti–6Al–4V pre-forms by Electron Beam Melting (EBM) has been studied at temperatures of 1000–1200 °C and strain rates of 0.001–1 s−1. As a reference, a wrought Ti–6Al–4V alloy was also analyzed as same as the EBM one. In order to investigate the hot working behaviour of these samples, all the data evaluations were carried out step by step, and the stepwise procedure was discussed. No localized strain as a consequence of shear band formation was found in the samples after the hot compression. The flow stress curves of all the samples showed peak stress at low strains, followed by a regime of flow softening with a near-steady-state flow at large strains. Interestingly, it is found that the initial microstructure and porosity content as well as the chemistry of material (e.g. oxygen content) as being possible contributors to the lower level of flow stress that could be beneficial from the industrial point of view. The flow softening mechanism(s) were discussed in detail using the microstructure of the specimens before and after the hot deformation. Dynamic Recrystalization (DRX) could also explain the gentle oscillation in the appearance of the flow softening curves of the EBM samples. Moreover, the hot working analysis indicated that the activation energy for hot deformation of as-built EBM Ti–6Al–4V alloy was calculated as ~193.25 kJ/mol, which was much lower than the wrought alloy (229.34 kJ/mol). These findings can shed lights on a new integration of metal Additive Manufacturing (AM) and thermomechanical processing. It is very interesting to highlight that through this new integration, it would be possible to reduce the forging steps and save more energy and materials with respect to the conventional routes.
Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field / Saboori, A.; Abdi, A.; Fatemi, S. A.; Marchese, G.; Biamino, S.; Mirzadeh, H.. - In: MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING. - ISSN 0921-5093. - ELETTRONICO. - 792:(2020), p. 139822. [10.1016/j.msea.2020.139822]
Hot deformation behavior and flow stress modeling of Ti–6Al–4V alloy produced via electron beam melting additive manufacturing technology in single β-phase field
Saboori A.;Marchese G.;Biamino S.;
2020
Abstract
The hot working behaviour of additively manufactured Ti–6Al–4V pre-forms by Electron Beam Melting (EBM) has been studied at temperatures of 1000–1200 °C and strain rates of 0.001–1 s−1. As a reference, a wrought Ti–6Al–4V alloy was also analyzed as same as the EBM one. In order to investigate the hot working behaviour of these samples, all the data evaluations were carried out step by step, and the stepwise procedure was discussed. No localized strain as a consequence of shear band formation was found in the samples after the hot compression. The flow stress curves of all the samples showed peak stress at low strains, followed by a regime of flow softening with a near-steady-state flow at large strains. Interestingly, it is found that the initial microstructure and porosity content as well as the chemistry of material (e.g. oxygen content) as being possible contributors to the lower level of flow stress that could be beneficial from the industrial point of view. The flow softening mechanism(s) were discussed in detail using the microstructure of the specimens before and after the hot deformation. Dynamic Recrystalization (DRX) could also explain the gentle oscillation in the appearance of the flow softening curves of the EBM samples. Moreover, the hot working analysis indicated that the activation energy for hot deformation of as-built EBM Ti–6Al–4V alloy was calculated as ~193.25 kJ/mol, which was much lower than the wrought alloy (229.34 kJ/mol). These findings can shed lights on a new integration of metal Additive Manufacturing (AM) and thermomechanical processing. It is very interesting to highlight that through this new integration, it would be possible to reduce the forging steps and save more energy and materials with respect to the conventional routes.File | Dimensione | Formato | |
---|---|---|---|
Manuscript.pdf
Open Access dal 03/07/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
819.87 kB
Formato
Adobe PDF
|
819.87 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0921509320308959-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
17.4 MB
Formato
Adobe PDF
|
17.4 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2842602