We show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presented

The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs / Impera, Debora; Pigola, Stefano; Rimoldi, Michele. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - STAMPA. - 773:(2021), pp. 1-20. [10.1515/crelle-2020-0044]

The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs

Impera, Debora;Rimoldi Michele
2021

Abstract

We show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presented
File in questo prodotto:
File Dimensione Formato  
IPR_Frankel.pdf

accesso riservato

Descrizione: pre-print (pre-referaggio)
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 360.79 kB
Formato Adobe PDF
360.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
IPR_Frankel-revised.pdf

accesso riservato

Descrizione: Post-print (bozza finale post-referaggio)
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 369.65 kB
Formato Adobe PDF
369.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.1515_crelle-2020-0044.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 406.41 kB
Formato Adobe PDF
406.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2841333