We show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presented
The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs / Impera, Debora; Pigola, Stefano; Rimoldi, Michele. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - STAMPA. - 773:(2021), pp. 1-20. [10.1515/crelle-2020-0044]
The Frankel property for self-shrinkers from the viewpoint of elliptic PDEs
Impera, Debora;Rimoldi Michele
2021
Abstract
We show that two properly embedded self-shrinkers in Euclidean space that are sufficiently separated at infinity must intersect at a finite point. The proof is based on a localized version of the Reilly formula applied to a suitable f-harmonic function with controlled gradient. In the immersed case, a new direct proof of the generalized half-space property is also presentedFile | Dimensione | Formato | |
---|---|---|---|
IPR_Frankel.pdf
accesso riservato
Descrizione: pre-print (pre-referaggio)
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
360.79 kB
Formato
Adobe PDF
|
360.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
IPR_Frankel-revised.pdf
accesso riservato
Descrizione: Post-print (bozza finale post-referaggio)
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
369.65 kB
Formato
Adobe PDF
|
369.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10.1515_crelle-2020-0044.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
406.41 kB
Formato
Adobe PDF
|
406.41 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2841333