Glass Fibre Reinforced Polymer (GRFP) composites are increasingly being used as new materials for civil and petrochemical engineering infrastructures, owing to the combination of relatively high specific strength and stiffness and cost-competitiveness over traditional materials. However, practical concerns remain on the environmental stability of these materials in harsh environments. For instance, diffusion of salty water through the composites can trigger degradation and ageing. For this reason, a continuous monitoring of the integrity of GFRP composites is required. GRFPs health monitoring solutions, being non-destructive, in-situ, real-time, highly reliable and remotely controllable, are as desirable as challenging. Herein we develop and compare two methods for real-time monitoring of GRFP: one based on the electrical sensing signals of percolated carbon nanotubes (CNTs) networks and the other on optical fibre sensors (OFSs). As a proof-of-concept of dual sensory system, both sensors were used in combination to detect the diffusion of water through the composite. Measurements demonstrated that both CNTs and OFSs were able to detect water diffusion through the epoxy matrix successfully, with an on-off sensing behaviour. OFSs exhibit some advantages since they do not require electrical supply as required in hazardous environments and are more suitable for remote operation, which make them attractive for new developments in harsh-environment sensing. On the other hand, CNTs can be easily embedded in the composite without compromising its performance (e.g., mechanical properties) and are easily interrogated by measurement of electrical conductance, therefore could be used as spot sensors in the most failure-prone sections of GFRP components. This study opens up the possibility for an early detection of composites degradation, which could prevent failures in GFRP structures such as pipelines and storage tanks used in the oil and gas industry.

Dual In-Situ Water Diffusion Monitoring of GFRPs based on Optical Fibres and CNTs / Marro Bellot, Cristian; de Leo, Giulia; Zhang, Han; Kernin, Arnaud; Scarponi, Claudio; Sangermano, Marco; Olivero, Massimo; Bilotti, Emiliano; Salvo, Milena. - In: JOURNAL OF COMPOSITES SCIENCE. - ISSN 2504-477X. - 4:3(2020), p. 97. [10.3390/jcs4030097]

Dual In-Situ Water Diffusion Monitoring of GFRPs based on Optical Fibres and CNTs

Marro Bellot, Cristian;Sangermano, Marco;Olivero, Massimo;Salvo, Milena
2020

Abstract

Glass Fibre Reinforced Polymer (GRFP) composites are increasingly being used as new materials for civil and petrochemical engineering infrastructures, owing to the combination of relatively high specific strength and stiffness and cost-competitiveness over traditional materials. However, practical concerns remain on the environmental stability of these materials in harsh environments. For instance, diffusion of salty water through the composites can trigger degradation and ageing. For this reason, a continuous monitoring of the integrity of GFRP composites is required. GRFPs health monitoring solutions, being non-destructive, in-situ, real-time, highly reliable and remotely controllable, are as desirable as challenging. Herein we develop and compare two methods for real-time monitoring of GRFP: one based on the electrical sensing signals of percolated carbon nanotubes (CNTs) networks and the other on optical fibre sensors (OFSs). As a proof-of-concept of dual sensory system, both sensors were used in combination to detect the diffusion of water through the composite. Measurements demonstrated that both CNTs and OFSs were able to detect water diffusion through the epoxy matrix successfully, with an on-off sensing behaviour. OFSs exhibit some advantages since they do not require electrical supply as required in hazardous environments and are more suitable for remote operation, which make them attractive for new developments in harsh-environment sensing. On the other hand, CNTs can be easily embedded in the composite without compromising its performance (e.g., mechanical properties) and are easily interrogated by measurement of electrical conductance, therefore could be used as spot sensors in the most failure-prone sections of GFRP components. This study opens up the possibility for an early detection of composites degradation, which could prevent failures in GFRP structures such as pipelines and storage tanks used in the oil and gas industry.
File in questo prodotto:
File Dimensione Formato  
jcs-04-00097.pdf

accesso aperto

Descrizione: post print editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2841299