From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy. In cancer, the growth control is damaged. In this paper, we analyze the role of the volume–area ratio in the cell in relation to the heat exchange between cell and its environment in order to point out its effect on cancer growth. The result holds to a possible control of the cancer growth based on the heat exchanged by the cancer toward its environment and the membrane potential variation, with the consequence of controlling the ions fluxes and the related biochemical reactions. This second law approach could represent a starting point for a possible future support for the anticancer therapies, in order to improve their effectiveness for the untreatable cancers.

Thermal Resonance and Cell Behavior / Lucia, U.; Grisolia, G.. - In: ENTROPY. - ISSN 1099-4300. - STAMPA. - 22:774(2020), pp. 1-11. [10.3390/e22070774]

Thermal Resonance and Cell Behavior

Lucia, U.;Grisolia, G.
2020

Abstract

From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy. In cancer, the growth control is damaged. In this paper, we analyze the role of the volume–area ratio in the cell in relation to the heat exchange between cell and its environment in order to point out its effect on cancer growth. The result holds to a possible control of the cancer growth based on the heat exchanged by the cancer toward its environment and the membrane potential variation, with the consequence of controlling the ions fluxes and the related biochemical reactions. This second law approach could represent a starting point for a possible future support for the anticancer therapies, in order to improve their effectiveness for the untreatable cancers.
2020
File in questo prodotto:
File Dimensione Formato  
entropy-22-00774.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 512.94 kB
Formato Adobe PDF
512.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2840477