The use of mechanic waves for assessing structural integrity is a well-known non-destructive technique (NDT). The ultrasound applied in the guided wave in particular requires significant effort in order to understand the complexities of the propagation so as to develop new methods in damage detection, in this case, knowing the interaction between the wave propagation and the geometry of the waveguides is mandatory. In the present work, the wave propagation in rectangular steel rod is presented. In this study, the section dimensions were fixed as 5 x 15 [mm], a typical element of the flexible riser structural amour commonly used in the offshore oil industry. The studies here presented were restricted to [0, 100 KHz] frequencies. This frequency interval is in the range of commercial waveguide equipment commonly applied in ducts in NDT applications. The computation of the dispersion curves is performed by using three different methodologies: (i) analytical solutions, (ii) a method that combines analytical approaches with finite element methods (SAFE), and (iii) experimental method that extracted information from the rod using laser vibrometers and piezoelectric actuators. Finally, two applications based on the dispersion curves determined in the rectangular waveguide are presented to illustrate the possibilities of the curve dispersion knowledge related to the specific geometry in the development and application linked toNDT. The first application consists on showing the possibilities of the techniques that use a fiber grating Bragg cell (FGB) to measure the wave displacement and the second application involves the simulation of pre-fissured prismatic waveguide aimed at searching to induce three characteristic acoustic events. The model was built combining the finite element method and a version of the discrete element method.

The elasticwave propagation in rectangular waveguide structure: Determination of dispersion curves and their application in nondestructive techniques / Groth, E. B.; Clarke, T. G. R.; da Silva, G. S.; Iturrioz, I.; Lacidogna, G.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - STAMPA. - 10:12(2020), p. 4401. [10.3390/app10124401]

The elasticwave propagation in rectangular waveguide structure: Determination of dispersion curves and their application in nondestructive techniques

Iturrioz I.;Lacidogna G.
2020

Abstract

The use of mechanic waves for assessing structural integrity is a well-known non-destructive technique (NDT). The ultrasound applied in the guided wave in particular requires significant effort in order to understand the complexities of the propagation so as to develop new methods in damage detection, in this case, knowing the interaction between the wave propagation and the geometry of the waveguides is mandatory. In the present work, the wave propagation in rectangular steel rod is presented. In this study, the section dimensions were fixed as 5 x 15 [mm], a typical element of the flexible riser structural amour commonly used in the offshore oil industry. The studies here presented were restricted to [0, 100 KHz] frequencies. This frequency interval is in the range of commercial waveguide equipment commonly applied in ducts in NDT applications. The computation of the dispersion curves is performed by using three different methodologies: (i) analytical solutions, (ii) a method that combines analytical approaches with finite element methods (SAFE), and (iii) experimental method that extracted information from the rod using laser vibrometers and piezoelectric actuators. Finally, two applications based on the dispersion curves determined in the rectangular waveguide are presented to illustrate the possibilities of the curve dispersion knowledge related to the specific geometry in the development and application linked toNDT. The first application consists on showing the possibilities of the techniques that use a fiber grating Bragg cell (FGB) to measure the wave displacement and the second application involves the simulation of pre-fissured prismatic waveguide aimed at searching to induce three characteristic acoustic events. The model was built combining the finite element method and a version of the discrete element method.
File in questo prodotto:
File Dimensione Formato  
applsci-10-04401.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 6.9 MB
Formato Adobe PDF
6.9 MB Adobe PDF Visualizza/Apri
manuscript.v8_ver_21_06_2020.pdf

accesso aperto

Descrizione: Articolo accettato
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2839559