The European demonstration fusion power reactor (EU DEMO) tokamak will be the first European fusion device to produce electricity and to include a breeding blanket (BB). In the framework of the design of the EU DEMO BB, the analysis of the heat transfer between the inlet and outlet manifold of the coolant is needed, to assess the actual cooling capability of the water entering the cooling channels, as well as the actual coolant outlet temperature from the machine. The complex, fully three-dimensional conjugate heat transfer problem is reduced here with a novel approach to a simpler one, decoupling the longitudinal and transverse scales for the heat transport by developing correlations for a conductive heat-transfer problem. While in the longitudinal direction a standard 1D model for the heat transport by fluid advection is adopted, a set of 2D finite elements analyses are run in the transverse direction, in order to lump the 2D heat conduction effects in suitable correlations. Such correlations are implemented in a 1D finite volume model with the 1D GEneral Tokamak THErmal-hydraulic Model (GETTHEM) code (Politecnico di Torino, Torino, Italy); the proposed approach thus reduces the 3D problem to a 1D one, allowing a parametric evaluation of the heat transfer in the entire blanket with a reduced computational cost. The deviation from nominal inlet and outlet temperature values, for the case of the Water-Cooled Lithium-Lead BB concept, is found to be always below 1.4 K and, in some cases, even to be beneficial. Consequently, the heat transfer among the manifolds at different temperatures can be safely (and conservatively) neglected.

Hybrid 1D + 2D Modelling for the Assessment of the Heat Transfer in the EU DEMO Water-Cooled Lithium-Lead Manifolds / Froio, Antonio; Bertinetti, Andrea; Del Nevo, Alessandro; Savoldi, Laura. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 13:14(2020), p. 3525. [10.3390/en13143525]

Hybrid 1D + 2D Modelling for the Assessment of the Heat Transfer in the EU DEMO Water-Cooled Lithium-Lead Manifolds

Froio, Antonio;Bertinetti, Andrea;Savoldi, Laura
2020

Abstract

The European demonstration fusion power reactor (EU DEMO) tokamak will be the first European fusion device to produce electricity and to include a breeding blanket (BB). In the framework of the design of the EU DEMO BB, the analysis of the heat transfer between the inlet and outlet manifold of the coolant is needed, to assess the actual cooling capability of the water entering the cooling channels, as well as the actual coolant outlet temperature from the machine. The complex, fully three-dimensional conjugate heat transfer problem is reduced here with a novel approach to a simpler one, decoupling the longitudinal and transverse scales for the heat transport by developing correlations for a conductive heat-transfer problem. While in the longitudinal direction a standard 1D model for the heat transport by fluid advection is adopted, a set of 2D finite elements analyses are run in the transverse direction, in order to lump the 2D heat conduction effects in suitable correlations. Such correlations are implemented in a 1D finite volume model with the 1D GEneral Tokamak THErmal-hydraulic Model (GETTHEM) code (Politecnico di Torino, Torino, Italy); the proposed approach thus reduces the 3D problem to a 1D one, allowing a parametric evaluation of the heat transfer in the entire blanket with a reduced computational cost. The deviation from nominal inlet and outlet temperature values, for the case of the Water-Cooled Lithium-Lead BB concept, is found to be always below 1.4 K and, in some cases, even to be beneficial. Consequently, the heat transfer among the manifolds at different temperatures can be safely (and conservatively) neglected.
2020
File in questo prodotto:
File Dimensione Formato  
energies-13-03525-v2.pdf

accesso aperto

Descrizione: Versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.38 MB
Formato Adobe PDF
7.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2839115