In this paper, a tool for the detection and diagnosis of anomalous electrical daily energy patterns relative to a transformer substation of a university campus was developed and tested. Through an innovative pattern recognition analysis consisting in a multi-step clustering process, six clusters of anomalous daily load profiles were identified and isolated in two-year historical data of total electrical energy consumption. The infrequent electrical load profiles were found to be strongly affected, in terms of both shape and magnitude, by the energy consumption behaviour related to the heating/cooling mechanical room. Then, a fault-free predictive model, which uses artificial neural network (ANN) in combination with a Regression Tree, was developed to detect anomalous trends of the electrical energy consumption. The model was able to detect the 93.7% of the anomalous profiles and only the 5% of fault-free days were wrongly predicted as anomalous. Eventually, a diagnosis phase was conceived and validated with a testing data set. A number of daily abnormal load profiles were detected and compared with the centroids of the anomalous clusters identified in the pattern-recognition stage. The work led to the development of a flexible intelligent tool useful for operating a continuous commissioning of the campus facilities.

A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings / Piscitelli, M. S.; Brandi, S.; Capozzoli, A.; Xiao, F.. - In: BUILDING SIMULATION. - ISSN 1996-3599. - (2020). [10.1007/s12273-020-0650-1]

A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings

Piscitelli M. S.;Brandi S.;Capozzoli A.;
2020

Abstract

In this paper, a tool for the detection and diagnosis of anomalous electrical daily energy patterns relative to a transformer substation of a university campus was developed and tested. Through an innovative pattern recognition analysis consisting in a multi-step clustering process, six clusters of anomalous daily load profiles were identified and isolated in two-year historical data of total electrical energy consumption. The infrequent electrical load profiles were found to be strongly affected, in terms of both shape and magnitude, by the energy consumption behaviour related to the heating/cooling mechanical room. Then, a fault-free predictive model, which uses artificial neural network (ANN) in combination with a Regression Tree, was developed to detect anomalous trends of the electrical energy consumption. The model was able to detect the 93.7% of the anomalous profiles and only the 5% of fault-free days were wrongly predicted as anomalous. Eventually, a diagnosis phase was conceived and validated with a testing data set. A number of daily abnormal load profiles were detected and compared with the centroids of the anomalous clusters identified in the pattern-recognition stage. The work led to the development of a flexible intelligent tool useful for operating a continuous commissioning of the campus facilities.
File in questo prodotto:
File Dimensione Formato  
Piscitelli 2020.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
A data analytics based tool.pdf

Open Access dal 14/05/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2837825