Landfills are sources of fugitive volatile organic carbon (VOC) emissions, including halocarbons. The objective of this study was to evaluate the contribution of halogenated VOCs to the health risks associated with the exposure of workers operating in landfills, gathering information on the role of endogenous/exogenous sources present in anthropized areas. A hazardous waste landfill located in Turin, Italy was used as a case study. Ambient concentrations of 10 pollutants (BTEX, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2-dichloroethane, and 1,2-dichloropropane), measured in 10 points of the landfill area, were considered and analyzed. The data had a monthly frequency and covered two years. A cumulative health risk analysis was conducted by applying a Monte-Carlo method. The results showed that the contribution of 1,2-dichloroethane and 1,2-dichloropropane was 17.9% and 19.4% for the total risk and hazard index respectively. Benzene and ethylbenzene gave the highest contribution to the total risk (56.8% and 24.8%, respectively). In the second phase of the study, waste typologies that are possibly responsible for halocarbon emissions were investigated. Halocarbon concentration trends and waste disposal records were compared. Although further investigation is needed, some waste typologies were not excluded to contribute to halocarbon emissions, in particular sludge coming from wastewater treatment plants.

Halocarbon emissions from hazardous waste landfills: Analysis of sources and risks / Ravina, M.; Facelli, A.; Zanetti, M.. - In: ATMOSPHERE. - ISSN 2073-4433. - 11:4(2020), p. 375. [10.3390/ATMOS11040375]

Halocarbon emissions from hazardous waste landfills: Analysis of sources and risks

Ravina M.;Zanetti M.
2020

Abstract

Landfills are sources of fugitive volatile organic carbon (VOC) emissions, including halocarbons. The objective of this study was to evaluate the contribution of halogenated VOCs to the health risks associated with the exposure of workers operating in landfills, gathering information on the role of endogenous/exogenous sources present in anthropized areas. A hazardous waste landfill located in Turin, Italy was used as a case study. Ambient concentrations of 10 pollutants (BTEX, styrene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2-dichloroethane, and 1,2-dichloropropane), measured in 10 points of the landfill area, were considered and analyzed. The data had a monthly frequency and covered two years. A cumulative health risk analysis was conducted by applying a Monte-Carlo method. The results showed that the contribution of 1,2-dichloroethane and 1,2-dichloropropane was 17.9% and 19.4% for the total risk and hazard index respectively. Benzene and ethylbenzene gave the highest contribution to the total risk (56.8% and 24.8%, respectively). In the second phase of the study, waste typologies that are possibly responsible for halocarbon emissions were investigated. Halocarbon concentration trends and waste disposal records were compared. Although further investigation is needed, some waste typologies were not excluded to contribute to halocarbon emissions, in particular sludge coming from wastewater treatment plants.
2020
File in questo prodotto:
File Dimensione Formato  
atmosphere-11-00375-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2836082