Carbon Nanotubes (CNT) are important fillers and reinforcing agents, frequently used in polymeric composites. CNT agglomerate and entangle with each other due to the presence of strong van der Waal forces between them. This agglomeration not only results in decreased product quality but also in lower conductance of composite than expected. Deagglomeration of CNT bundles is necessary for a better dispersion either through chemical functionalization (covalent or non-covalent) or by mechanical methods (stirring, calendering and ultrasonication). This review contains different methods for chemical surface modification of CNT, which not only decrease CNT-matrix interface resistance by providing a soft interface between filler and matrix but also increases CNT dispersion in different types of matrices.
Review - Surface Modification of Carbon Nanotubes: A Tool to Control Electrochemical Performance / Atif, M.; Afzaal, I.; Naseer, H.; Abrar, M.; Bongiovanni, R.. - In: ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY. - ISSN 2162-8769. - 9:4(2020), p. 041009. [10.1149/2162-8777/ab8929]
Review - Surface Modification of Carbon Nanotubes: A Tool to Control Electrochemical Performance
Atif M.;Bongiovanni R.
2020
Abstract
Carbon Nanotubes (CNT) are important fillers and reinforcing agents, frequently used in polymeric composites. CNT agglomerate and entangle with each other due to the presence of strong van der Waal forces between them. This agglomeration not only results in decreased product quality but also in lower conductance of composite than expected. Deagglomeration of CNT bundles is necessary for a better dispersion either through chemical functionalization (covalent or non-covalent) or by mechanical methods (stirring, calendering and ultrasonication). This review contains different methods for chemical surface modification of CNT, which not only decrease CNT-matrix interface resistance by providing a soft interface between filler and matrix but also increases CNT dispersion in different types of matrices.File | Dimensione | Formato | |
---|---|---|---|
2449665.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
8.66 MB
Formato
Adobe PDF
|
8.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2833928