During the optimization phase of a wave energy converter (WEC), it is essential to be able to rely on a model that is both fast and accurate. In this regard, Computational Fluid Dynamic (CFD) with Reynolds Averaged Navier–Stokes (RANS) approach is not suitable for optimization studies, given its computational cost, while methods based on potential theory are fast but not accurate enough. A good compromise can be found in boundary element methods (BEMs), based on potential theory, with the addition of non-linearities. This paper deals with the identification of viscous parameters to account for such non-linearities, based on CFD-Unsteady RANS (URANS) analysis. The work proposes two different methodologies to identify the viscous damping along the rotational degree of freedom (DOF) of pitch and roll: The first solely involves the outcomes of the CFD simulations, computing the viscous damping coefficients through the logarithmic decrement method, the second approach solves the Cummins’ equation of motion, via a Runge-Kutta scheme, selecting the damping coefficients that minimize the difference with CFD time series. The viscous damping is mostly linear for pitch and quadratic for roll, given the shape of the WEC analysed.

Viscous Damping Identification for a Wave Energy Converter Using CFD-URANS Simulations / Fontana, Marco; Casalone, Pietro; Sirigu, Sergej Antonello; Giorgi, Giuseppe; Bracco, Giovanni; Mattiazzo, Giuliana. - In: JOURNAL OF MARINE SCIENCE AND ENGINEERING. - ISSN 2077-1312. - 8:5(2020), p. 355. [10.3390/jmse8050355]

Viscous Damping Identification for a Wave Energy Converter Using CFD-URANS Simulations

Fontana, Marco;Casalone, Pietro;Sirigu, Sergej Antonello;Giorgi, Giuseppe;Bracco, Giovanni;Mattiazzo, Giuliana
2020

Abstract

During the optimization phase of a wave energy converter (WEC), it is essential to be able to rely on a model that is both fast and accurate. In this regard, Computational Fluid Dynamic (CFD) with Reynolds Averaged Navier–Stokes (RANS) approach is not suitable for optimization studies, given its computational cost, while methods based on potential theory are fast but not accurate enough. A good compromise can be found in boundary element methods (BEMs), based on potential theory, with the addition of non-linearities. This paper deals with the identification of viscous parameters to account for such non-linearities, based on CFD-Unsteady RANS (URANS) analysis. The work proposes two different methodologies to identify the viscous damping along the rotational degree of freedom (DOF) of pitch and roll: The first solely involves the outcomes of the CFD simulations, computing the viscous damping coefficients through the logarithmic decrement method, the second approach solves the Cummins’ equation of motion, via a Runge-Kutta scheme, selecting the damping coefficients that minimize the difference with CFD time series. The viscous damping is mostly linear for pitch and quadratic for roll, given the shape of the WEC analysed.
File in questo prodotto:
File Dimensione Formato  
FONTANA - Viscous Damping Identification for a Wave Energy Converter Using CFD-URANS Simulations - 2020.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2833514