We consider generic degenerate subvarieties Xi ⊂ Pn. We determine an integer N, depending on the varieties, and for n≥N we compute dimension and degree formulas for the Hadamard product of the varieties Xi. Moreover, if the varieties Xi are smooth, their Hadamard product is smooth too. For n < N, if the Xi are generically di-parameterized, the dimension and degree formulas still hold. However, the Hadamard product can be singular and we give a lower bound for the dimension of the singular locus.
On the hadamard product of degenerate subvarieties / Calussi, G.; Carlini, E.; Fatabbi, G.; Lorenzini, A.. - In: PORTUGALIAE MATHEMATICA. - ISSN 0032-5155. - STAMPA. - 76:2(2019), pp. 123-141. [10.4171/PM/2029]
On the hadamard product of degenerate subvarieties
Carlini E.;
2019
Abstract
We consider generic degenerate subvarieties Xi ⊂ Pn. We determine an integer N, depending on the varieties, and for n≥N we compute dimension and degree formulas for the Hadamard product of the varieties Xi. Moreover, if the varieties Xi are smooth, their Hadamard product is smooth too. For n < N, if the Xi are generically di-parameterized, the dimension and degree formulas still hold. However, the Hadamard product can be singular and we give a lower bound for the dimension of the singular locus.| File | Dimensione | Formato | |
|---|---|---|---|
| 1804.01388.pdf accesso aperto 
											Descrizione: Articolo principale
										 
											Tipologia:
											1. Preprint / submitted version [pre- review]
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										238.36 kB
									 
										Formato
										Adobe PDF
									 | 238.36 kB | Adobe PDF | Visualizza/Apri | 
| OnTheHadaamrdProductOfDegenerateSub.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										130.01 kB
									 
										Formato
										Adobe PDF
									 | 130.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2832872
			
		
	
	
	
			      	