The increasing availability of data gathered from smart meters makes it possible to develop specific data analytics procedures to extract knowledge from data. The analysis of huge amounts of data coming from millions of users needs appropriate platforms and efficient algorithms. The platform SHAPE (Statistical Hybrid Analysis for load ProfilE), set up by e-distribuzione, has enabled to determine, for the first time in Italy, the consumption classes at national level based on the behaviour of low-voltage customers. This paper discusses the data handling process in SHAPE, based on customer sampling by macro-categories, definition of consistent time periods, and clustering-based load profiling, and addresses specific applications such as customer classification, load prediction, probabilistic aggregation of residential loads, and sharing of the energy not supplied by macro-categories of users.
Unveil the Shape: Data Analytics for Extracting Knowledge from Smart Meters / Chicco, Gianfranco; Notaristefano, Antonio; Piglione, Federico. - In: L'ENERGIA ELETTRICA. - ISSN 1590-7651. - ELETTRONICO. - 96, no. 6(2019), pp. 1-15.
Titolo: | Unveil the Shape: Data Analytics for Extracting Knowledge from Smart Meters |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.36156/ENERGIA06_01 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
COP 6 2006 (Page 1) - ee2019_06_riv.pdf | Articolo principale | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2831636