In this paper we develop a theory of Besov and Triebel{Lizorkin spaces on general noncompact Lie groups endowed with a sub-Riemannian structure. Such spaces are dened by means of hypoelliptic sub-Laplacians with drift, and endowed with a measure whose density with respect to a right Haar measure is a continuous positive character of the group. We prove several equivalent characterizations of their norms, we establish comparison results also involving Sobolev spaces of recent introduction, and investigate their complex interpolation and algebra properties.
Besov and Triebel–Lizorkin spaces on Lie groups / Bruno, Tommaso; Peloso, Marco M.; Vallarino, Maria. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - STAMPA. - 377(2020), pp. 335-377.
Titolo: | Besov and Triebel–Lizorkin spaces on Lie groups |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00208-019-01927-z |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BTL_Bruno-Peloso-Vallarino-resubmitted.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri | |
Bruno2020_Article_BesovAndTriebelLizorkinSpacesO.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2831501