We address the minimization of the Canham–Helfrich functional in presence of multiple phases. The problem is inspired by the modelization of heterogeneous biological membranes, which may feature variable bending rigidities and spontaneous curvatures. With respect to previous contributions, no symmetry of the minimizers is here assumed. Correspondingly, the problem is reformulated and solved in the weaker frame of oriented curvature varifolds. We present a lower semicontinuity result and prove existence of single- and multiphase minimizers under area and enclosed-volume constrains. Additionally, we discuss regularity of minimizers and establish lower and upper diameter bounds.

Existence of varifold minimizers for the multiphase Canham–Helfrich functional / Brazda, K.; Lussardi, L.; Stefanelli, U.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 59:3(2020). [10.1007/s00526-020-01759-9]

Existence of varifold minimizers for the multiphase Canham–Helfrich functional

Lussardi L.;
2020

Abstract

We address the minimization of the Canham–Helfrich functional in presence of multiple phases. The problem is inspired by the modelization of heterogeneous biological membranes, which may feature variable bending rigidities and spontaneous curvatures. With respect to previous contributions, no symmetry of the minimizers is here assumed. Correspondingly, the problem is reformulated and solved in the weaker frame of oriented curvature varifolds. We present a lower semicontinuity result and prove existence of single- and multiphase minimizers under area and enclosed-volume constrains. Additionally, we discuss regularity of minimizers and establish lower and upper diameter bounds.
File in questo prodotto:
File Dimensione Formato  
BLS_v3.pdf

Open Access dal 09/05/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 399.14 kB
Formato Adobe PDF
399.14 kB Adobe PDF Visualizza/Apri
Brazda2020_Article_ExistenceOfVarifoldMinimizersF.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 512.28 kB
Formato Adobe PDF
512.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2829234