We address the minimization of the Canham–Helfrich functional in presence of multiple phases. The problem is inspired by the modelization of heterogeneous biological membranes, which may feature variable bending rigidities and spontaneous curvatures. With respect to previous contributions, no symmetry of the minimizers is here assumed. Correspondingly, the problem is reformulated and solved in the weaker frame of oriented curvature varifolds. We present a lower semicontinuity result and prove existence of single- and multiphase minimizers under area and enclosed-volume constrains. Additionally, we discuss regularity of minimizers and establish lower and upper diameter bounds.
Existence of varifold minimizers for the multiphase Canham–Helfrich functional / Brazda, K.; Lussardi, L.; Stefanelli, U.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 59:3(2020).
Titolo: | Existence of varifold minimizers for the multiphase Canham–Helfrich functional |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00526-020-01759-9 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
BLS_v3.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Embargo: 08/05/2021 Richiedi una copia | |
Brazda2020_Article_ExistenceOfVarifoldMinimizersF.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2829234