Millimeter-wave (mmwave) communication repre- sents a potential solution to capacity shortage in vehicular net- works. However, effective beam alignment between senders and receivers requires accurate knowledge of the vehicles’ position for fast beam steering, which is often impractical to obtain in real time. We address this problem by leveraging the traffic signals regulating vehicular mobility: as an example, we may coordinate beams with red traffic lights, as they correspond to higher vehicle densities and lower speeds. To evaluate our intuition, we propose a tractable, yet accurate, mmwave communication model accounting for both the distance and the heading of vehicles being served. Using such a model, we optimize the beam design and define a low-complexity, heuristic strategy. For increased realism, we consider as reference scenario a large-scale, real- world mobility trace of vehicles in Luxembourg. The results show that our approach closely matches the optimum and always outperforms static beam design based on road topology alone. Remarkably, it also yields better performance than solutions based on real-time mobility information.
Mmwave Beam Management in Urban Vehicular Networks / Limani Fazliu, Zana; Malandrino, Francesco; Chiasserini, Carla Fabiana; Nordio, Alessandro. - In: IEEE SYSTEMS JOURNAL. - ISSN 1932-8184. - STAMPA. - 15:2(2021), pp. 2798-2809. [10.1109/JSYST.2020.2996909]
Mmwave Beam Management in Urban Vehicular Networks
Carla Fabiana Chiasserini;
2021
Abstract
Millimeter-wave (mmwave) communication repre- sents a potential solution to capacity shortage in vehicular net- works. However, effective beam alignment between senders and receivers requires accurate knowledge of the vehicles’ position for fast beam steering, which is often impractical to obtain in real time. We address this problem by leveraging the traffic signals regulating vehicular mobility: as an example, we may coordinate beams with red traffic lights, as they correspond to higher vehicle densities and lower speeds. To evaluate our intuition, we propose a tractable, yet accurate, mmwave communication model accounting for both the distance and the heading of vehicles being served. Using such a model, we optimize the beam design and define a low-complexity, heuristic strategy. For increased realism, we consider as reference scenario a large-scale, real- world mobility trace of vehicles in Luxembourg. The results show that our approach closely matches the optimum and always outperforms static beam design based on road topology alone. Remarkably, it also yields better performance than solutions based on real-time mobility information.File | Dimensione | Formato | |
---|---|---|---|
journal_final_v0.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
09110716.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2827452