Borehole heat exchangers (BHEs) commonly reach depths of several tens of meters and cross different aquifers. Concerns have been raised about the possibility of boreholes to act as preferential pathways for contaminant transport among aquifers (cross-contamination). This article employs numerical modelling of contaminant transport in the subsurface to address these concerns. A common hydrogeological setup is simulated, composed of three layers: A shallow contaminated and a deep uncontaminated aquifer separated by an aquitard, all crossed by a permeable borehole. The hydraulic conductivity of the borehole and, to a lesser extent, the vertical hydraulic gradient between the aquifers are the key factors of cross-contamination. Results of the numerical simulations highlight that, despite the severe conditions hypothesized in our modelling study, the cross-contamination due to the borehole is negligible when filled with a slightly permeable material such as a geothermal grout properly mixed and injected. A good agreement was found with analytical formulas used for estimating the flow rate leaking through the borehole and for studying the propagation of leaked contaminant into the deep aquifer.

Can Borehole Heat Exchangers Trigger Cross-Contamination between Aquifers? / Casasso, Alessandro; Ferrantello, Natalia; Pescarmona, Simone; Bianco, Carlo; Sethi, Rajandrea. - In: WATER. - ISSN 2073-4441. - 12:4(2020), p. 1174. [10.3390/w12041174]

Can Borehole Heat Exchangers Trigger Cross-Contamination between Aquifers?

Casasso, Alessandro;Ferrantello, Natalia;Bianco, Carlo;Sethi, Rajandrea
2020

Abstract

Borehole heat exchangers (BHEs) commonly reach depths of several tens of meters and cross different aquifers. Concerns have been raised about the possibility of boreholes to act as preferential pathways for contaminant transport among aquifers (cross-contamination). This article employs numerical modelling of contaminant transport in the subsurface to address these concerns. A common hydrogeological setup is simulated, composed of three layers: A shallow contaminated and a deep uncontaminated aquifer separated by an aquitard, all crossed by a permeable borehole. The hydraulic conductivity of the borehole and, to a lesser extent, the vertical hydraulic gradient between the aquifers are the key factors of cross-contamination. Results of the numerical simulations highlight that, despite the severe conditions hypothesized in our modelling study, the cross-contamination due to the borehole is negligible when filled with a slightly permeable material such as a geothermal grout properly mixed and injected. A good agreement was found with analytical formulas used for estimating the flow rate leaking through the borehole and for studying the propagation of leaked contaminant into the deep aquifer.
2020
File in questo prodotto:
File Dimensione Formato  
water-12-01174(1).pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2815035