This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the Lagrangian-antidiffusive remap (L-AR) scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first- and second-order numerical schemes.
Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models / Chiarello, F. A.; Goatin, P.; Villada, L. M.. - In: COMPUTATIONAL & APPLIED MATHEMATICS. - ISSN 1807-0302. - 39:2(2020). [10.1007/s40314-020-1097-9]
Titolo: | Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s40314-020-1097-9 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Chiarello2020_Article_Lagrangian-antidiffusiveRemapS.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
COMPUTATIONAL & APPLIED MATHEMATICS.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2814512