This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the Lagrangian-antidiffusive remap (L-AR) scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first- and second-order numerical schemes.
Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models / Chiarello, F. A.; Goatin, P.; Villada, L. M.. - In: COMPUTATIONAL & APPLIED MATHEMATICS. - ISSN 1807-0302. - 39:2(2020). [10.1007/s40314-020-1097-9]
Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models
Chiarello F. A.;Goatin P.;
2020
Abstract
This paper focuses on the numerical approximation of the solutions of a class of non-local systems in one space dimension, arising in traffic modeling. We propose alternative simple schemes by splitting the non-local conservation laws into two different equations, namely the Lagrangian and the remap steps. We provide some properties and estimates recovered by approximating the problem with the Lagrangian-antidiffusive remap (L-AR) scheme, and we prove the convergence to weak solutions in the scalar case. Finally, we show some numerical simulations illustrating the efficiency of the L-AR schemes in comparison with classical first- and second-order numerical schemes.File | Dimensione | Formato | |
---|---|---|---|
Chiarello2020_Article_Lagrangian-antidiffusiveRemapS.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
COMPUTATIONAL & APPLIED MATHEMATICS.pdf
Open Access dal 12/02/2021
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2814512