Among the many proposed opportunistic content sharing schemes, Floating Content (FC) is of special interest for the vehicular environment, not only for cellular traffic offloading, but also as a natural communication paradigm for location-based context-aware vehicular applications. Previously published results on the performance of vehicular FC have mostly focused on the conditions under which content persists over time in a given region of space, without addressing other important aspects of vehicular FC performance, such as the effectiveness with which content is replicated and made available, and the system conditions that enable good FC performance. This work presents a first analytical model of FC performance in vehicular networks in urban settings. It is based on a new synthetic mobility model (called District Mobility Model - DMM), and it does not require a detailed knowledge of the road grid geometry. We validate our model extensively, by comparison against numerical simulations based on real-world traces, and we prove our model accuracy under a variety of mobility patterns and traffic conditions. Our analytical and simulation results provide evidence of the effectiveness of theFC paradigm in realistic urban settings over a wide range of traffic conditions.

Analytical models of floating content in a vehicular urban environment / Manzo, G.; Ajmone Marsan, M.; Rizzo, G. A.. - In: AD HOC NETWORKS. - ISSN 1570-8705. - 88:(2019), pp. 65-80. [10.1016/j.adhoc.2019.01.003]

Analytical models of floating content in a vehicular urban environment

Ajmone Marsan M.;
2019

Abstract

Among the many proposed opportunistic content sharing schemes, Floating Content (FC) is of special interest for the vehicular environment, not only for cellular traffic offloading, but also as a natural communication paradigm for location-based context-aware vehicular applications. Previously published results on the performance of vehicular FC have mostly focused on the conditions under which content persists over time in a given region of space, without addressing other important aspects of vehicular FC performance, such as the effectiveness with which content is replicated and made available, and the system conditions that enable good FC performance. This work presents a first analytical model of FC performance in vehicular networks in urban settings. It is based on a new synthetic mobility model (called District Mobility Model - DMM), and it does not require a detailed knowledge of the road grid geometry. We validate our model extensively, by comparison against numerical simulations based on real-world traces, and we prove our model accuracy under a variety of mobility patterns and traffic conditions. Our analytical and simulation results provide evidence of the effectiveness of theFC paradigm in realistic urban settings over a wide range of traffic conditions.
File in questo prodotto:
File Dimensione Formato  
Analytical_models_floating_content_vehicular_urban_environment_2019_EN.pdf

non disponibili

Descrizione: Articolo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2811274