The power conversion efficiency of perovskite solar cells (PSCs) has remarkably increased, in just a few years, from 3.8 to 22.7%, due to the excellent properties of organometal-halide perovskite, such as strong and broad optical absorption from visible to near infrared, high electron and hole diffusion length and a low surface recombination velocity. Nevertheless, PSCs are susceptible to oxygen and water, because of a degradation pathway leading to the formation of lead iodide, methylammonium and hydrogen iodide. For this reason, perovskite materials require high temperature and glove-box synthetic conditions, thus hindering large-scale applications. During last year, a few efforts have been made in the development of ambient condition fabrication strategies, such as thermal engineering and the use of anti-solvents. In the first case, the substrate TiO2 is pre-heated at low temperature before spin-coating deposition of perovskite precursors. This ensures phase purity and a pinhole-free morphology, with a PCE reaching 12%. In the second case, the use of anti-solvents reduces the solubility of perovskite precursors, thereby promoting fast nucleation and rapid crystallization. In this way, the effect of air-moisture is less relevant. In conclusion, the fabrication of PSCs in open air atmospheric conditions is challenging, but necessary for photovoltaic application of perovskite materials.

Emerging strategies towards ambient condition fabrication of perovskite solar cells / Fagiolari, L.; Gerbaldi, C.; Bella, F.. - STAMPA. - (2019), pp. 122-122. (Intervento presentato al convegno Giornate dell’Elettrochimica Italiana (GEI 2019) tenutosi a Padua (Italy) nel 8-12 September 2019).

Emerging strategies towards ambient condition fabrication of perovskite solar cells

L. Fagiolari;C. Gerbaldi;F. Bella
2019

Abstract

The power conversion efficiency of perovskite solar cells (PSCs) has remarkably increased, in just a few years, from 3.8 to 22.7%, due to the excellent properties of organometal-halide perovskite, such as strong and broad optical absorption from visible to near infrared, high electron and hole diffusion length and a low surface recombination velocity. Nevertheless, PSCs are susceptible to oxygen and water, because of a degradation pathway leading to the formation of lead iodide, methylammonium and hydrogen iodide. For this reason, perovskite materials require high temperature and glove-box synthetic conditions, thus hindering large-scale applications. During last year, a few efforts have been made in the development of ambient condition fabrication strategies, such as thermal engineering and the use of anti-solvents. In the first case, the substrate TiO2 is pre-heated at low temperature before spin-coating deposition of perovskite precursors. This ensures phase purity and a pinhole-free morphology, with a PCE reaching 12%. In the second case, the use of anti-solvents reduces the solubility of perovskite precursors, thereby promoting fast nucleation and rapid crystallization. In this way, the effect of air-moisture is less relevant. In conclusion, the fabrication of PSCs in open air atmospheric conditions is challenging, but necessary for photovoltaic application of perovskite materials.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2809017