In this work, the cold-spray technique was used to deposit Inconel 718–nickel (1:1) composite coatings on stainless steel substrate. A general full factorial design was adopted to identify the statistically significant operating variables, i.e., impingement angle, erodent size, and feed rate on the coating erosion response. Erodent feed rate, impingement angle, and the interaction between impingement angle and erodent size were identified as the highly significant variables on the erosion rate. Then, a model correlating the identified variables with the erosion rate was derived. The best combination of control variables for minimum erosion loss with respect to erodent feed rate, erodent size, and impingement angle was 2 mg/min, 60 μm, and 90°, respectively. To analyze the erosion mechanism, the erodent samples were finally observed using Scanning Electron Microscope (SEM).

Modeling of Erosion Response of Cold-Sprayed In718-Ni Composite Coating Using Full Factorial Design / Verna, Elisa; Biagi, Roberto; Kazasidis, Marios; Galetto, Maurizio; Bemporad, Edoardo; Lupoi, Rocco. - In: COATINGS. - ISSN 2079-6412. - ELETTRONICO. - 10:4(2020), p. 335. [10.3390/coatings10040335]

Modeling of Erosion Response of Cold-Sprayed In718-Ni Composite Coating Using Full Factorial Design

Verna, Elisa;Galetto, Maurizio;
2020

Abstract

In this work, the cold-spray technique was used to deposit Inconel 718–nickel (1:1) composite coatings on stainless steel substrate. A general full factorial design was adopted to identify the statistically significant operating variables, i.e., impingement angle, erodent size, and feed rate on the coating erosion response. Erodent feed rate, impingement angle, and the interaction between impingement angle and erodent size were identified as the highly significant variables on the erosion rate. Then, a model correlating the identified variables with the erosion rate was derived. The best combination of control variables for minimum erosion loss with respect to erodent feed rate, erodent size, and impingement angle was 2 mg/min, 60 μm, and 90°, respectively. To analyze the erosion mechanism, the erodent samples were finally observed using Scanning Electron Microscope (SEM).
2020
File in questo prodotto:
File Dimensione Formato  
coatings-10-00335.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.76 MB
Formato Adobe PDF
4.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2808846