In this paper, the concept of the circularly polarized agile, multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) structure for fifth generation (5G) new radio application in mobile terminal is presented. Two prototypes have been fabricated, namely one with cylindrical DRA (CDRA) referred as A1 and a second one with ring DRA (RDRA) named as A2. These practical realizations of dual-port MIMO antennas have been mounted on a Rogers 5870 substrate of octagonal shape with proper ground architecture. The proposed dual-port MIMO antennas have been excited with conformal probes and L-type feed network aiming to achieve circular polarization (CP). Measured impedance bandwidth of A1 and A2 are 21.2% (3.15-3.9 GHz) and 22.2% (3.12-3.9 GHz), respectively. Moreover, for both antennas low mutual coupling between ports with minimum isolation of dB over entire impedance bandwidth has been obtained by using triangular head slots in the ground plane. Measured axial ratio bandwidths in broadside direction are 5.66% (3.26-3.45 GHz) and 4.25% (3.45-3.6 GHz), respectively. Maximum gains are 7.3 and 7.2 dBi, in that order. MIMO antenna parameters such as envelope correction coefficient, diversity gain (DG), mean effective gain and total active reflection coefficient are also calculated to verify MIMO performance parameters. The proposed antennas also demonstrate CP agility with insertion of concentric cylindrical shells of different radii.

Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications / Singhwal, S. S.; Kanaujia, B. K.; Singh, A.; Kishor, J.; Matekovits, L.. - In: JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS. - ISSN 0920-5071. - ELETTRONICO. - (2020), pp. 1-15. [10.1080/09205071.2020.1730984]

Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications

Matekovits, L.
2020

Abstract

In this paper, the concept of the circularly polarized agile, multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) structure for fifth generation (5G) new radio application in mobile terminal is presented. Two prototypes have been fabricated, namely one with cylindrical DRA (CDRA) referred as A1 and a second one with ring DRA (RDRA) named as A2. These practical realizations of dual-port MIMO antennas have been mounted on a Rogers 5870 substrate of octagonal shape with proper ground architecture. The proposed dual-port MIMO antennas have been excited with conformal probes and L-type feed network aiming to achieve circular polarization (CP). Measured impedance bandwidth of A1 and A2 are 21.2% (3.15-3.9 GHz) and 22.2% (3.12-3.9 GHz), respectively. Moreover, for both antennas low mutual coupling between ports with minimum isolation of dB over entire impedance bandwidth has been obtained by using triangular head slots in the ground plane. Measured axial ratio bandwidths in broadside direction are 5.66% (3.26-3.45 GHz) and 4.25% (3.45-3.6 GHz), respectively. Maximum gains are 7.3 and 7.2 dBi, in that order. MIMO antenna parameters such as envelope correction coefficient, diversity gain (DG), mean effective gain and total active reflection coefficient are also calculated to verify MIMO performance parameters. The proposed antennas also demonstrate CP agility with insertion of concentric cylindrical shells of different radii.
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Descrizione: SinghwalKanaujiaSinghKishorMatekovits_Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Matekovits-multiple.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2807014