The rupture of a vulnerable plaque, known as ulceration, is the most common cause of myocardial infarction. It can be recognized by angiographic features, such as prolonged intraluminal filling and delayed clearance of the contrast liquid. The diagnosis of such an event is an open challenge due to the limited angiographic resolution and acquisition frequency. The treatment of ulcerated plaques is an open discussion, due to the high heterogeneity and the lack of evidences that support particular strategies. Therefore, the therapeutic decision should follow a detailed investigation with angiography and intravascular imaging, such as optical coherence tomography (OCT), to locate the lesion, besides its geometric features and the lumen occlusion severity. The aim of this study is the application of a framework for the in-silico analysis of the disrupted hemodynamics due to an ulcerated lesion. The study employed a validated OCT-based reconstruction methodology and computational fluid dynamics (CFD) simulations for the computation of local hemodynamic quantities, such as wall shear stress. The reported findings, such as disrupted pre-operative flow conditions, proved the applicability of the developed framework for CFD analyses on complicated patient-specific anatomies that feature ulcerated plaques. The prediction of lesion expansion and the clinical decision making can benefit from a reliable computation of wall shear stress distributions that result from the peculiar anatomy of the lesion. The application of intravascular OCT imaging, high fidelity 3D reconstructions and CFD simulations might guide the treatment of such pathology.

Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque / Migliori, S.; Chiastra, C.; Bologna, M.; Montin, E.; Dubini, G.; Genuardi, L.; Aurigemma, C.; Mainardi, L.; Burzotta, F.; Migliavacca, F.. - In: MEDICAL ENGINEERING & PHYSICS. - ISSN 1350-4533. - 78:(2020), pp. 74-81. [10.1016/j.medengphy.2019.12.006]

Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque

Chiastra C.;
2020

Abstract

The rupture of a vulnerable plaque, known as ulceration, is the most common cause of myocardial infarction. It can be recognized by angiographic features, such as prolonged intraluminal filling and delayed clearance of the contrast liquid. The diagnosis of such an event is an open challenge due to the limited angiographic resolution and acquisition frequency. The treatment of ulcerated plaques is an open discussion, due to the high heterogeneity and the lack of evidences that support particular strategies. Therefore, the therapeutic decision should follow a detailed investigation with angiography and intravascular imaging, such as optical coherence tomography (OCT), to locate the lesion, besides its geometric features and the lumen occlusion severity. The aim of this study is the application of a framework for the in-silico analysis of the disrupted hemodynamics due to an ulcerated lesion. The study employed a validated OCT-based reconstruction methodology and computational fluid dynamics (CFD) simulations for the computation of local hemodynamic quantities, such as wall shear stress. The reported findings, such as disrupted pre-operative flow conditions, proved the applicability of the developed framework for CFD analyses on complicated patient-specific anatomies that feature ulcerated plaques. The prediction of lesion expansion and the clinical decision making can benefit from a reliable computation of wall shear stress distributions that result from the peculiar anatomy of the lesion. The application of intravascular OCT imaging, high fidelity 3D reconstructions and CFD simulations might guide the treatment of such pathology.
File in questo prodotto:
File Dimensione Formato  
2020 Migliori - UlceratedPlaque_MEP post-print.pdf

Open Access dal 06/02/2021

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri
2020 Migliori - Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2806572