The demand of low latency applications has fostered interest in edge computing, a recent paradigm in which data is processed locally, at the edge of the network. The challenge of delivering services with low-latency and high bandwidth requirements has seen the flourishing of Software-Defined Networking (SDN) solutions that utilize ad-hoc data-driven statistical learning solutions to dynamically steer edge computing resources. In this paper, we propose RoPE, an architecture that adapts the routing strategy of the underlying edge network based on future available bandwidth. The bandwidth prediction method is a policy that we adjust dynamically based on the required time-to-solution and on the available data. An SDN controller keeps track of past link loads and takes a new route if the current path is predicted to be congested. We tested RoPE on different use case applications comparing different well-known prediction policies. Our evaluation results demonstrate that our adaptive solution outperforms other ad-hoc routing solutions and edge-based applications, in turn, benefit from adaptive routing, as long as the prediction is accurate and easy to obtain.

RoPE: An Architecture for Adaptive Data-Driven Routing Prediction at the Edge / Sacco, Alessio; Esposito, Flavio; Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 17:2(2020), pp. 986-999. [10.1109/TNSM.2020.2980899]

RoPE: An Architecture for Adaptive Data-Driven Routing Prediction at the Edge

Alessio Sacco;Guido Marchetto
2020

Abstract

The demand of low latency applications has fostered interest in edge computing, a recent paradigm in which data is processed locally, at the edge of the network. The challenge of delivering services with low-latency and high bandwidth requirements has seen the flourishing of Software-Defined Networking (SDN) solutions that utilize ad-hoc data-driven statistical learning solutions to dynamically steer edge computing resources. In this paper, we propose RoPE, an architecture that adapts the routing strategy of the underlying edge network based on future available bandwidth. The bandwidth prediction method is a policy that we adjust dynamically based on the required time-to-solution and on the available data. An SDN controller keeps track of past link loads and takes a new route if the current path is predicted to be congested. We tested RoPE on different use case applications comparing different well-known prediction policies. Our evaluation results demonstrate that our adaptive solution outperforms other ad-hoc routing solutions and edge-based applications, in turn, benefit from adaptive routing, as long as the prediction is accurate and easy to obtain.
File in questo prodotto:
File Dimensione Formato  
TNSM 2019 - Rope - final.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TNSM_Rope_final.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2802297