We consider the Schrödinger equation in dimension two with a fixed, pointwise, focusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features: first, the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity, i.e. for every power there exist blow-up solutions. This last property is uncommon among the conservative Schrödinger equations with local nonlinearity.
Blow-up for the pointwise NLS in dimension two: Absence of critical power / Adami, Riccardo; Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 269:1(2020), pp. 1-37. [10.1016/j.jde.2019.11.096]
Blow-up for the pointwise NLS in dimension two: Absence of critical power
Adami Riccardo;Tentarelli Lorenzo
2020
Abstract
We consider the Schrödinger equation in dimension two with a fixed, pointwise, focusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features: first, the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity, i.e. for every power there exist blow-up solutions. This last property is uncommon among the conservative Schrödinger equations with local nonlinearity.File | Dimensione | Formato | |
---|---|---|---|
Adami R., Carlone R., Correggi M., Tentarelli L., Blow-up for the pointwise NLS in dimension two: Absence of critical power, 2020.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
479.4 kB
Formato
Adobe PDF
|
479.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Adami-Carlone-Correggi-Tentarelli-revised-110919.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
422.08 kB
Formato
Adobe PDF
|
422.08 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2795599