We consider the Schrödinger equation in dimension two with a fixed, pointwise, focusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features: first, the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity, i.e. for every power there exist blow-up solutions. This last property is uncommon among the conservative Schrödinger equations with local nonlinearity.

Blow-up for the pointwise NLS in dimension two: Absence of critical power / Adami, Riccardo; Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 269:1(2020), pp. 1-37. [10.1016/j.jde.2019.11.096]

Blow-up for the pointwise NLS in dimension two: Absence of critical power

Adami Riccardo;Tentarelli Lorenzo
2020

Abstract

We consider the Schrödinger equation in dimension two with a fixed, pointwise, focusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features: first, the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity, i.e. for every power there exist blow-up solutions. This last property is uncommon among the conservative Schrödinger equations with local nonlinearity.
File in questo prodotto:
File Dimensione Formato  
Adami R., Carlone R., Correggi M., Tentarelli L., Blow-up for the pointwise NLS in dimension two: Absence of critical power, 2020.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 479.4 kB
Formato Adobe PDF
479.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Adami-Carlone-Correggi-Tentarelli-revised-110919.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 422.08 kB
Formato Adobe PDF
422.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2795599