We consider the Schrödinger equation in dimension two with a fixed, pointwise, focusing nonlinearity and show the occurrence of a blow-up phenomenon with two peculiar features: first, the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves. Second, there is no critical power nonlinearity, i.e. for every power there exist blow-up solutions. This last property is uncommon among the conservative Schrödinger equations with local nonlinearity.
Blow-up for the pointwise NLS in dimension two: Absence of critical power / Adami, Riccardo; Carlone, Raffaele; Correggi, Michele; Tentarelli, Lorenzo. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 269:1(2020), pp. 1-37.
Titolo: | Blow-up for the pointwise NLS in dimension two: Absence of critical power |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.jde.2019.11.096 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Adami R., Carlone R., Correggi M., Tentarelli L., Blow-up for the pointwise NLS in dimension two: Absence of critical power, 2020.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
Adami-Carlone-Correggi-Tentarelli-revised-110919.pdf | 2. Post-print / Author's Accepted Manuscript | ![]() | Embargo: 05/12/2021 Richiedi una copia |
http://hdl.handle.net/11583/2795599