Self-regeneration is a fundamental property of biological materials, leading to enhanced mechanical strength and toughness if subjected to stress and fatigue. Numerous efforts have been devoted to emulate this property and various self-healing materials have been designed with the aim of a practical adoption in construction and mechanical engineering. To achieve this, it is important to understand how damage evolution and fracture propagation are modified by self-healing and to evaluate how mechanical behaviour is affected before failure. In this paper, we implement for the first time a self-healing procedure in the Random Fuse model, whose characteristic scaling properties have been widely studied in the literature on damage evolution modeling. We identify some characteristic signatures of self-healing, showing that it can delay the failure of a material undergoing loading, but it also lead to a hard-to-predict, more catastrophic breakdown.
Random Fuse Model in the presence of self-healing / Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M. - In: NEW JOURNAL OF PHYSICS. - ISSN 1367-2630. - (2020), pp. 1-21.
Titolo: | Random Fuse Model in the presence of self-healing |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/1367-2630/ab713f |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Costagliola+et+al_2020_New_J._Phys._10.1088_1367-2630_ab713f.pdf | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
Costagliola_2020_New_J._Phys._22_033005.pdf | 2a Post-print versione editoriale / Version of Record | ![]() | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/2793360