We prove the nonsplit case of the Lang-Vojta conjecture over function fields for surfaces of log general type that are ramified covers of $mathbbG_m^2$. This extends results of Corvaja and Zannier, who proved the conjecture in the split case, and results of Corvaja and Zannier and the second author that were obtained in the case of the complement of a degree four and three component divisor in $mathbbP^2$. We follow the strategy developed by Corvaja and Zannier and make explicit all the constants involved.

Lang-Vojta Conjecture over function fields for surfaces dominating $mathbbG_m^2$ / Capuano, L; Turchet, A.. - (2019).

Lang-Vojta Conjecture over function fields for surfaces dominating $mathbbG_m^2$

Capuano L;
2019

Abstract

We prove the nonsplit case of the Lang-Vojta conjecture over function fields for surfaces of log general type that are ramified covers of $mathbbG_m^2$. This extends results of Corvaja and Zannier, who proved the conjecture in the split case, and results of Corvaja and Zannier and the second author that were obtained in the case of the complement of a degree four and three component divisor in $mathbbP^2$. We follow the strategy developed by Corvaja and Zannier and make explicit all the constants involved.
File in questo prodotto:
File Dimensione Formato  
8.Lang-Vojta conjecture.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 412.22 kB
Formato Adobe PDF
412.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2790237