The theory of continued fractions has been generalized to ℓ-adic numbers by several authors and presents many differences with respect to the real case. In the present paper we investigate the expansion of rationals and quadratic irrationals for the ℓ-adic continued fractions introduced by Ruban. In this case, rational numbers may have a periodic non-terminating continued fraction expansion; moreover, for quadratic irrational numbers, no analogue of Lagrange's theorem holds. We give general explicit criteria to establish the periodicity of the expansion in both the rational and the quadratic case (for rationals, the qualitative result is due to Laohakosol.
An effective criterion for periodicity of ℓ-adic continued fractions / Capuano, L.; Veneziano, F.; Zannier, U.. - In: MATHEMATICS OF COMPUTATION. - ISSN 1088-6842. - 88:318(2018), pp. 1851-1882.
Titolo: | An effective criterion for periodicity of ℓ-adic continued fractions |
Autori: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/mcom/3385 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
6.l-adic continued fractions.pdf | Articolo principale | 2. Post-print / Author's Accepted Manuscript | ![]() | Visibile a tuttiVisualizza/Apri |
S0025-5718-2018-03385-3.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2790235