In this paper we present a classification of the possible upper ramification jumps for an elementary Abelian p-extension of ap-adic field. The fundamental step for the proof of the main result is the computation of the ramification filtration for the maximal elementary Abelian p-extension of the base field K. This result generalizes [3, Lemma 9, p. 2861, where the same result is proved under the assumption that K contains a primitive p-th root of unity. To deal with this general case we use class field theory and the explicit relations between the normic group of an extension and its ramification jumps, and we obtain necessary and sufficient conditions for the upper ramification jumps of an elementary Abelian p-extension of K.

A note on upper ramification jumps in Abelian extensions of exponent p / Capuano, L.; Del Corso, I.. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA (ONLINE). - ISSN 2284-2578. - 6:2(2015), pp. 317-329.

A note on upper ramification jumps in Abelian extensions of exponent p

Capuano L.;
2015

Abstract

In this paper we present a classification of the possible upper ramification jumps for an elementary Abelian p-extension of ap-adic field. The fundamental step for the proof of the main result is the computation of the ramification filtration for the maximal elementary Abelian p-extension of the base field K. This result generalizes [3, Lemma 9, p. 2861, where the same result is proved under the assumption that K contains a primitive p-th root of unity. To deal with this general case we use class field theory and the explicit relations between the normic group of an extension and its ramification jumps, and we obtain necessary and sufficient conditions for the upper ramification jumps of an elementary Abelian p-extension of K.
File in questo prodotto:
File Dimensione Formato  
2.A note on upper ramification jumps.pdf

Open Access dal 16/10/2020

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 405.34 kB
Formato Adobe PDF
405.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2790214