Falling raindrops and other hydrometeors have, in general, nonspherical shapes and mean canting angles that are due to aerodynamic and gravitational forces. We use the T matrix and the quantum theory of angular momentum to compute extinction matrices, scattering and absorption cross sections, backscattering matrices, and, from these quantities, radar parameters. A monodisperse population of rain with axially symmetric distribution over orientations where the axis of symmetry is the local direction of air flow about the raindrops is considered. Oblate spheroids with axial ratios that depend on size and appropriate series of Chebyshev polynomials were assumed for definition of the shapes of raindrops. Computations were performed at common microwave frequencies for several temperatures, incidence angles, and degrees of particle wobble about a preferred orientation. Results reveal the importance of the role of orientation distribution and particle size and the shape of radar parameters in these computations for a region of moderate-sized raindrops. © 2001 Optical Society of America.

Radar and scattering parameters through falling hydrometeors with axisymmetric shapes / Battaglia, Alessandro; Prodi, Franco; Orazio Sturniolo, And. - In: APPLIED OPTICS. - ISSN 0003-6935. - 40:18(2001), pp. 3092-3100. [10.1364/AO.40.003092]

Radar and scattering parameters through falling hydrometeors with axisymmetric shapes

Alessandro Battaglia;
2001

Abstract

Falling raindrops and other hydrometeors have, in general, nonspherical shapes and mean canting angles that are due to aerodynamic and gravitational forces. We use the T matrix and the quantum theory of angular momentum to compute extinction matrices, scattering and absorption cross sections, backscattering matrices, and, from these quantities, radar parameters. A monodisperse population of rain with axially symmetric distribution over orientations where the axis of symmetry is the local direction of air flow about the raindrops is considered. Oblate spheroids with axial ratios that depend on size and appropriate series of Chebyshev polynomials were assumed for definition of the shapes of raindrops. Computations were performed at common microwave frequencies for several temperatures, incidence angles, and degrees of particle wobble about a preferred orientation. Results reveal the importance of the role of orientation distribution and particle size and the shape of radar parameters in these computations for a region of moderate-sized raindrops. © 2001 Optical Society of America.
2001
File in questo prodotto:
File Dimensione Formato  
ao-40-18-3092.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 598.48 kB
Formato Adobe PDF
598.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2790182