Let b 2 be an integer and wb(n) be the sum of digits of the nonnegative integer n written in hereditary base b notation. We give optimal upper bounds for the exponential sum PN1 n=0 exp(2⇡iwb(n)t), where t is a real number. In particular, our results imply that for each positive integer m the sequence {wb(n)}1 n=0 is uniformly distributed modulo m; and that for each irrational real ↵ the sequence {wb(n)↵}1 n=1 is uniformly distributed modulo 1.

On the exponential sum with the sum of digits of hereditary base b notation / Sanna, Carlo. - In: INTEGERS. - ISSN 1553-1732. - ELETTRONICO. - 14:A36(2014).

On the exponential sum with the sum of digits of hereditary base b notation

Sanna Carlo
2014

Abstract

Let b 2 be an integer and wb(n) be the sum of digits of the nonnegative integer n written in hereditary base b notation. We give optimal upper bounds for the exponential sum PN1 n=0 exp(2⇡iwb(n)t), where t is a real number. In particular, our results imply that for each positive integer m the sequence {wb(n)}1 n=0 is uniformly distributed modulo m; and that for each irrational real ↵ the sequence {wb(n)↵}1 n=1 is uniformly distributed modulo 1.
2014
File in questo prodotto:
File Dimensione Formato  
Final - On the exponential sum with the sum of digits of hereditary base b notation.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 349.26 kB
Formato Adobe PDF
349.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2789536