Let b 2 be an integer and wb(n) be the sum of digits of the nonnegative integer n written in hereditary base b notation. We give optimal upper bounds for the exponential sum PN1 n=0 exp(2⇡iwb(n)t), where t is a real number. In particular, our results imply that for each positive integer m the sequence {wb(n)}1 n=0 is uniformly distributed modulo m; and that for each irrational real ↵ the sequence {wb(n)↵}1 n=1 is uniformly distributed modulo 1.
On the exponential sum with the sum of digits of hereditary base b notation / Sanna, Carlo. - In: INTEGERS. - ISSN 1553-1732. - ELETTRONICO. - 14:A36(2014).
On the exponential sum with the sum of digits of hereditary base b notation
Sanna Carlo
2014
Abstract
Let b 2 be an integer and wb(n) be the sum of digits of the nonnegative integer n written in hereditary base b notation. We give optimal upper bounds for the exponential sum PN1 n=0 exp(2⇡iwb(n)t), where t is a real number. In particular, our results imply that for each positive integer m the sequence {wb(n)}1 n=0 is uniformly distributed modulo m; and that for each irrational real ↵ the sequence {wb(n)↵}1 n=1 is uniformly distributed modulo 1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Final - On the exponential sum with the sum of digits of hereditary base b notation.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
349.26 kB
Formato
Adobe PDF
|
349.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2789536